aboutsummaryrefslogtreecommitdiff
path: root/examples/oculus_glfw_sample/OculusSDK
diff options
context:
space:
mode:
authorraysan5 <raysan5@gmail.com>2016-07-16 19:52:32 +0200
committerraysan5 <raysan5@gmail.com>2016-07-16 19:52:32 +0200
commit0ba349bdf219fb7789ee90b72c5d6b92be6340cf (patch)
tree0fdf1242a5a031def32ca8a37724e4172bc191af /examples/oculus_glfw_sample/OculusSDK
parent35bda8980f632203f98122b3f9da3d1d984f35c5 (diff)
downloadraylib-0ba349bdf219fb7789ee90b72c5d6b92be6340cf.tar.gz
raylib-0ba349bdf219fb7789ee90b72c5d6b92be6340cf.zip
Removed oculus glfw sample (already on raylib)
Replaced by example rlgl_oculus_rift
Diffstat (limited to 'examples/oculus_glfw_sample/OculusSDK')
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_CAPI_Util.h196
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_Math.h3785
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_StereoProjection.h70
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI.h2116
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Audio.h76
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_D3D.h155
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h99
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Keys.h53
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_ErrorCode.h209
-rw-r--r--examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_Version.h60
10 files changed, 0 insertions, 6819 deletions
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_CAPI_Util.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_CAPI_Util.h
deleted file mode 100644
index 552f3b12..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_CAPI_Util.h
+++ /dev/null
@@ -1,196 +0,0 @@
-/********************************************************************************//**
-\file OVR_CAPI_Util.h
-\brief This header provides LibOVR utility function declarations
-\copyright Copyright 2015-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_CAPI_Util_h
-#define OVR_CAPI_Util_h
-
-
-#include "../OVR_CAPI.h"
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-/// Enumerates modifications to the projection matrix based on the application's needs.
-///
-/// \see ovrMatrix4f_Projection
-///
-typedef enum ovrProjectionModifier_
-{
- /// Use for generating a default projection matrix that is:
- /// * Right-handed.
- /// * Near depth values stored in the depth buffer are smaller than far depth values.
- /// * Both near and far are explicitly defined.
- /// * With a clipping range that is (0 to w).
- ovrProjection_None = 0x00,
-
- /// Enable if using left-handed transformations in your application.
- ovrProjection_LeftHanded = 0x01,
-
- /// After the projection transform is applied, far values stored in the depth buffer will be less than closer depth values.
- /// NOTE: Enable only if the application is using a floating-point depth buffer for proper precision.
- ovrProjection_FarLessThanNear = 0x02,
-
- /// When this flag is used, the zfar value pushed into ovrMatrix4f_Projection() will be ignored
- /// NOTE: Enable only if ovrProjection_FarLessThanNear is also enabled where the far clipping plane will be pushed to infinity.
- ovrProjection_FarClipAtInfinity = 0x04,
-
- /// Enable if the application is rendering with OpenGL and expects a projection matrix with a clipping range of (-w to w).
- /// Ignore this flag if your application already handles the conversion from D3D range (0 to w) to OpenGL.
- ovrProjection_ClipRangeOpenGL = 0x08,
-} ovrProjectionModifier;
-
-
-/// Return values for ovr_Detect.
-///
-/// \see ovr_Detect
-///
-typedef struct OVR_ALIGNAS(8) ovrDetectResult_
-{
- /// Is ovrFalse when the Oculus Service is not running.
- /// This means that the Oculus Service is either uninstalled or stopped.
- /// IsOculusHMDConnected will be ovrFalse in this case.
- /// Is ovrTrue when the Oculus Service is running.
- /// This means that the Oculus Service is installed and running.
- /// IsOculusHMDConnected will reflect the state of the HMD.
- ovrBool IsOculusServiceRunning;
-
- /// Is ovrFalse when an Oculus HMD is not detected.
- /// If the Oculus Service is not running, this will be ovrFalse.
- /// Is ovrTrue when an Oculus HMD is detected.
- /// This implies that the Oculus Service is also installed and running.
- ovrBool IsOculusHMDConnected;
-
- OVR_UNUSED_STRUCT_PAD(pad0, 6) ///< \internal struct padding
-
-} ovrDetectResult;
-
-OVR_STATIC_ASSERT(sizeof(ovrDetectResult) == 8, "ovrDetectResult size mismatch");
-
-
-/// Detects Oculus Runtime and Device Status
-///
-/// Checks for Oculus Runtime and Oculus HMD device status without loading the LibOVRRT
-/// shared library. This may be called before ovr_Initialize() to help decide whether or
-/// not to initialize LibOVR.
-///
-/// \param[in] timeoutMilliseconds Specifies a timeout to wait for HMD to be attached or 0 to poll.
-///
-/// \return Returns an ovrDetectResult object indicating the result of detection.
-///
-/// \see ovrDetectResult
-///
-OVR_PUBLIC_FUNCTION(ovrDetectResult) ovr_Detect(int timeoutMilliseconds);
-
-// On the Windows platform,
-#ifdef _WIN32
- /// This is the Windows Named Event name that is used to check for HMD connected state.
- #define OVR_HMD_CONNECTED_EVENT_NAME L"OculusHMDConnected"
-#endif // _WIN32
-
-
-/// Used to generate projection from ovrEyeDesc::Fov.
-///
-/// \param[in] fov Specifies the ovrFovPort to use.
-/// \param[in] znear Distance to near Z limit.
-/// \param[in] zfar Distance to far Z limit.
-/// \param[in] projectionModFlags A combination of the ovrProjectionModifier flags.
-///
-/// \return Returns the calculated projection matrix.
-///
-/// \see ovrProjectionModifier
-///
-OVR_PUBLIC_FUNCTION(ovrMatrix4f) ovrMatrix4f_Projection(ovrFovPort fov, float znear, float zfar, unsigned int projectionModFlags);
-
-
-/// Extracts the required data from the result of ovrMatrix4f_Projection.
-///
-/// \param[in] projection Specifies the project matrix from which to extract ovrTimewarpProjectionDesc.
-/// \param[in] projectionModFlags A combination of the ovrProjectionModifier flags.
-/// \return Returns the extracted ovrTimewarpProjectionDesc.
-/// \see ovrTimewarpProjectionDesc
-///
-OVR_PUBLIC_FUNCTION(ovrTimewarpProjectionDesc) ovrTimewarpProjectionDesc_FromProjection(ovrMatrix4f projection, unsigned int projectionModFlags);
-
-
-/// Generates an orthographic sub-projection.
-///
-/// Used for 2D rendering, Y is down.
-///
-/// \param[in] projection The perspective matrix that the orthographic matrix is derived from.
-/// \param[in] orthoScale Equal to 1.0f / pixelsPerTanAngleAtCenter.
-/// \param[in] orthoDistance Equal to the distance from the camera in meters, such as 0.8m.
-/// \param[in] HmdToEyeOffsetX Specifies the offset of the eye from the center.
-///
-/// \return Returns the calculated projection matrix.
-///
-OVR_PUBLIC_FUNCTION(ovrMatrix4f) ovrMatrix4f_OrthoSubProjection(ovrMatrix4f projection, ovrVector2f orthoScale,
- float orthoDistance, float HmdToEyeOffsetX);
-
-
-
-/// Computes offset eye poses based on headPose returned by ovrTrackingState.
-///
-/// \param[in] headPose Indicates the HMD position and orientation to use for the calculation.
-/// \param[in] hmdToEyeOffset Can be ovrEyeRenderDesc.HmdToEyeOffset returned from
-/// ovr_GetRenderDesc. For monoscopic rendering, use a vector that is the average
-/// of the two vectors for both eyes.
-/// \param[out] outEyePoses If outEyePoses are used for rendering, they should be passed to
-/// ovr_SubmitFrame in ovrLayerEyeFov::RenderPose or ovrLayerEyeFovDepth::RenderPose.
-///
-OVR_PUBLIC_FUNCTION(void) ovr_CalcEyePoses(ovrPosef headPose,
- const ovrVector3f hmdToEyeOffset[2],
- ovrPosef outEyePoses[2]);
-
-
-/// Returns the predicted head pose in outHmdTrackingState and offset eye poses in outEyePoses.
-///
-/// This is a thread-safe function where caller should increment frameIndex with every frame
-/// and pass that index where applicable to functions called on the rendering thread.
-/// Assuming outEyePoses are used for rendering, it should be passed as a part of ovrLayerEyeFov.
-/// The caller does not need to worry about applying HmdToEyeOffset to the returned outEyePoses variables.
-///
-/// \param[in] hmd Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] frameIndex Specifies the targeted frame index, or 0 to refer to one frame after
-/// the last time ovr_SubmitFrame was called.
-/// \param[in] latencyMarker Specifies that this call is the point in time where
-/// the "App-to-Mid-Photon" latency timer starts from. If a given ovrLayer
-/// provides "SensorSampleTimestamp", that will override the value stored here.
-/// \param[in] hmdToEyeOffset Can be ovrEyeRenderDesc.HmdToEyeOffset returned from
-/// ovr_GetRenderDesc. For monoscopic rendering, use a vector that is the average
-/// of the two vectors for both eyes.
-/// \param[out] outEyePoses The predicted eye poses.
-/// \param[out] outSensorSampleTime The time when this function was called. May be NULL, in which case it is ignored.
-///
-OVR_PUBLIC_FUNCTION(void) ovr_GetEyePoses(ovrSession session, long long frameIndex, ovrBool latencyMarker,
- const ovrVector3f hmdToEyeOffset[2],
- ovrPosef outEyePoses[2],
- double* outSensorSampleTime);
-
-
-
-/// Tracking poses provided by the SDK come in a right-handed coordinate system. If an application
-/// is passing in ovrProjection_LeftHanded into ovrMatrix4f_Projection, then it should also use
-/// this function to flip the HMD tracking poses to be left-handed.
-///
-/// While this utility function is intended to convert a left-handed ovrPosef into a right-handed
-/// coordinate system, it will also work for converting right-handed to left-handed since the
-/// flip operation is the same for both cases.
-///
-/// \param[in] inPose that is right-handed
-/// \param[out] outPose that is requested to be left-handed (can be the same pointer to inPose)
-///
-OVR_PUBLIC_FUNCTION(void) ovrPosef_FlipHandedness(const ovrPosef* inPose, ovrPosef* outPose);
-
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-
-#endif // Header include guard
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_Math.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_Math.h
deleted file mode 100644
index c182ed5b..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_Math.h
+++ /dev/null
@@ -1,3785 +0,0 @@
-/********************************************************************************//**
-\file OVR_Math.h
-\brief Implementation of 3D primitives such as vectors, matrices.
-\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_Math_h
-#define OVR_Math_h
-
-
-// This file is intended to be independent of the rest of LibOVR and LibOVRKernel and thus
-// has no #include dependencies on either.
-
-#include <math.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <float.h>
-#include "../OVR_CAPI.h" // Currently required due to a dependence on the ovrFovPort_ declaration.
-
-#if defined(_MSC_VER)
- #pragma warning(push)
- #pragma warning(disable: 4127) // conditional expression is constant
-#endif
-
-
-#if defined(_MSC_VER)
- #define OVRMath_sprintf sprintf_s
-#else
- #define OVRMath_sprintf snprintf
-#endif
-
-
-//-------------------------------------------------------------------------------------
-// ***** OVR_MATH_ASSERT
-//
-// Independent debug break implementation for OVR_Math.h.
-
-#if !defined(OVR_MATH_DEBUG_BREAK)
- #if defined(_DEBUG)
- #if defined(_MSC_VER)
- #define OVR_MATH_DEBUG_BREAK __debugbreak()
- #else
- #define OVR_MATH_DEBUG_BREAK __builtin_trap()
- #endif
- #else
- #define OVR_MATH_DEBUG_BREAK ((void)0)
- #endif
-#endif
-
-
-//-------------------------------------------------------------------------------------
-// ***** OVR_MATH_ASSERT
-//
-// Independent OVR_MATH_ASSERT implementation for OVR_Math.h.
-
-#if !defined(OVR_MATH_ASSERT)
- #if defined(_DEBUG)
- #define OVR_MATH_ASSERT(p) if (!(p)) { OVR_MATH_DEBUG_BREAK; }
- #else
- #define OVR_MATH_ASSERT(p) ((void)0)
- #endif
-#endif
-
-
-//-------------------------------------------------------------------------------------
-// ***** OVR_MATH_STATIC_ASSERT
-//
-// Independent OVR_MATH_ASSERT implementation for OVR_Math.h.
-
-#if !defined(OVR_MATH_STATIC_ASSERT)
- #if defined(__cplusplus) && ((defined(_MSC_VER) && (defined(_MSC_VER) >= 1600)) || defined(__GXX_EXPERIMENTAL_CXX0X__) || (__cplusplus >= 201103L))
- #define OVR_MATH_STATIC_ASSERT static_assert
- #else
- #if !defined(OVR_SA_UNUSED)
- #if defined(__GNUC__) || defined(__clang__)
- #define OVR_SA_UNUSED __attribute__((unused))
- #else
- #define OVR_SA_UNUSED
- #endif
- #define OVR_SA_PASTE(a,b) a##b
- #define OVR_SA_HELP(a,b) OVR_SA_PASTE(a,b)
- #endif
-
- #define OVR_MATH_STATIC_ASSERT(expression, msg) typedef char OVR_SA_HELP(compileTimeAssert, __LINE__) [((expression) != 0) ? 1 : -1] OVR_SA_UNUSED
- #endif
-#endif
-
-
-
-namespace OVR {
-
-template<class T>
-const T OVRMath_Min(const T a, const T b)
-{ return (a < b) ? a : b; }
-
-template<class T>
-const T OVRMath_Max(const T a, const T b)
-{ return (b < a) ? a : b; }
-
-template<class T>
-void OVRMath_Swap(T& a, T& b)
-{ T temp(a); a = b; b = temp; }
-
-
-//-------------------------------------------------------------------------------------
-// ***** Constants for 3D world/axis definitions.
-
-// Definitions of axes for coordinate and rotation conversions.
-enum Axis
-{
- Axis_X = 0, Axis_Y = 1, Axis_Z = 2
-};
-
-// RotateDirection describes the rotation direction around an axis, interpreted as follows:
-// CW - Clockwise while looking "down" from positive axis towards the origin.
-// CCW - Counter-clockwise while looking from the positive axis towards the origin,
-// which is in the negative axis direction.
-// CCW is the default for the RHS coordinate system. Oculus standard RHS coordinate
-// system defines Y up, X right, and Z back (pointing out from the screen). In this
-// system Rotate_CCW around Z will specifies counter-clockwise rotation in XY plane.
-enum RotateDirection
-{
- Rotate_CCW = 1,
- Rotate_CW = -1
-};
-
-// Constants for right handed and left handed coordinate systems
-enum HandedSystem
-{
- Handed_R = 1, Handed_L = -1
-};
-
-// AxisDirection describes which way the coordinate axis points. Used by WorldAxes.
-enum AxisDirection
-{
- Axis_Up = 2,
- Axis_Down = -2,
- Axis_Right = 1,
- Axis_Left = -1,
- Axis_In = 3,
- Axis_Out = -3
-};
-
-struct WorldAxes
-{
- AxisDirection XAxis, YAxis, ZAxis;
-
- WorldAxes(AxisDirection x, AxisDirection y, AxisDirection z)
- : XAxis(x), YAxis(y), ZAxis(z)
- { OVR_MATH_ASSERT(abs(x) != abs(y) && abs(y) != abs(z) && abs(z) != abs(x));}
-};
-
-} // namespace OVR
-
-
-//------------------------------------------------------------------------------------//
-// ***** C Compatibility Types
-
-// These declarations are used to support conversion between C types used in
-// LibOVR C interfaces and their C++ versions. As an example, they allow passing
-// Vector3f into a function that expects ovrVector3f.
-
-typedef struct ovrQuatf_ ovrQuatf;
-typedef struct ovrQuatd_ ovrQuatd;
-typedef struct ovrSizei_ ovrSizei;
-typedef struct ovrSizef_ ovrSizef;
-typedef struct ovrSized_ ovrSized;
-typedef struct ovrRecti_ ovrRecti;
-typedef struct ovrVector2i_ ovrVector2i;
-typedef struct ovrVector2f_ ovrVector2f;
-typedef struct ovrVector2d_ ovrVector2d;
-typedef struct ovrVector3f_ ovrVector3f;
-typedef struct ovrVector3d_ ovrVector3d;
-typedef struct ovrVector4f_ ovrVector4f;
-typedef struct ovrVector4d_ ovrVector4d;
-typedef struct ovrMatrix2f_ ovrMatrix2f;
-typedef struct ovrMatrix2d_ ovrMatrix2d;
-typedef struct ovrMatrix3f_ ovrMatrix3f;
-typedef struct ovrMatrix3d_ ovrMatrix3d;
-typedef struct ovrMatrix4f_ ovrMatrix4f;
-typedef struct ovrMatrix4d_ ovrMatrix4d;
-typedef struct ovrPosef_ ovrPosef;
-typedef struct ovrPosed_ ovrPosed;
-typedef struct ovrPoseStatef_ ovrPoseStatef;
-typedef struct ovrPoseStated_ ovrPoseStated;
-
-namespace OVR {
-
-// Forward-declare our templates.
-template<class T> class Quat;
-template<class T> class Size;
-template<class T> class Rect;
-template<class T> class Vector2;
-template<class T> class Vector3;
-template<class T> class Vector4;
-template<class T> class Matrix2;
-template<class T> class Matrix3;
-template<class T> class Matrix4;
-template<class T> class Pose;
-template<class T> class PoseState;
-
-// CompatibleTypes::Type is used to lookup a compatible C-version of a C++ class.
-template<class C>
-struct CompatibleTypes
-{
- // Declaration here seems necessary for MSVC; specializations are
- // used instead.
- typedef struct {} Type;
-};
-
-// Specializations providing CompatibleTypes::Type value.
-template<> struct CompatibleTypes<Quat<float> > { typedef ovrQuatf Type; };
-template<> struct CompatibleTypes<Quat<double> > { typedef ovrQuatd Type; };
-template<> struct CompatibleTypes<Matrix2<float> > { typedef ovrMatrix2f Type; };
-template<> struct CompatibleTypes<Matrix2<double> > { typedef ovrMatrix2d Type; };
-template<> struct CompatibleTypes<Matrix3<float> > { typedef ovrMatrix3f Type; };
-template<> struct CompatibleTypes<Matrix3<double> > { typedef ovrMatrix3d Type; };
-template<> struct CompatibleTypes<Matrix4<float> > { typedef ovrMatrix4f Type; };
-template<> struct CompatibleTypes<Matrix4<double> > { typedef ovrMatrix4d Type; };
-template<> struct CompatibleTypes<Size<int> > { typedef ovrSizei Type; };
-template<> struct CompatibleTypes<Size<float> > { typedef ovrSizef Type; };
-template<> struct CompatibleTypes<Size<double> > { typedef ovrSized Type; };
-template<> struct CompatibleTypes<Rect<int> > { typedef ovrRecti Type; };
-template<> struct CompatibleTypes<Vector2<int> > { typedef ovrVector2i Type; };
-template<> struct CompatibleTypes<Vector2<float> > { typedef ovrVector2f Type; };
-template<> struct CompatibleTypes<Vector2<double> > { typedef ovrVector2d Type; };
-template<> struct CompatibleTypes<Vector3<float> > { typedef ovrVector3f Type; };
-template<> struct CompatibleTypes<Vector3<double> > { typedef ovrVector3d Type; };
-template<> struct CompatibleTypes<Vector4<float> > { typedef ovrVector4f Type; };
-template<> struct CompatibleTypes<Vector4<double> > { typedef ovrVector4d Type; };
-template<> struct CompatibleTypes<Pose<float> > { typedef ovrPosef Type; };
-template<> struct CompatibleTypes<Pose<double> > { typedef ovrPosed Type; };
-
-//------------------------------------------------------------------------------------//
-// ***** Math
-//
-// Math class contains constants and functions. This class is a template specialized
-// per type, with Math<float> and Math<double> being distinct.
-template<class T>
-class Math
-{
-public:
- // By default, support explicit conversion to float. This allows Vector2<int> to
- // compile, for example.
- typedef float OtherFloatType;
-
- static int Tolerance() { return 0; } // Default value so integer types compile
-};
-
-
-//------------------------------------------------------------------------------------//
-// ***** double constants
-#define MATH_DOUBLE_PI 3.14159265358979323846
-#define MATH_DOUBLE_TWOPI (2*MATH_DOUBLE_PI)
-#define MATH_DOUBLE_PIOVER2 (0.5*MATH_DOUBLE_PI)
-#define MATH_DOUBLE_PIOVER4 (0.25*MATH_DOUBLE_PI)
-#define MATH_FLOAT_MAXVALUE (FLT_MAX)
-
-#define MATH_DOUBLE_RADTODEGREEFACTOR (360.0 / MATH_DOUBLE_TWOPI)
-#define MATH_DOUBLE_DEGREETORADFACTOR (MATH_DOUBLE_TWOPI / 360.0)
-
-#define MATH_DOUBLE_E 2.71828182845904523536
-#define MATH_DOUBLE_LOG2E 1.44269504088896340736
-#define MATH_DOUBLE_LOG10E 0.434294481903251827651
-#define MATH_DOUBLE_LN2 0.693147180559945309417
-#define MATH_DOUBLE_LN10 2.30258509299404568402
-
-#define MATH_DOUBLE_SQRT2 1.41421356237309504880
-#define MATH_DOUBLE_SQRT1_2 0.707106781186547524401
-
-#define MATH_DOUBLE_TOLERANCE 1e-12 // a default number for value equality tolerance: about 4500*Epsilon;
-#define MATH_DOUBLE_SINGULARITYRADIUS 1e-12 // about 1-cos(.0001 degree), for gimbal lock numerical problems
-
-//------------------------------------------------------------------------------------//
-// ***** float constants
-#define MATH_FLOAT_PI float(MATH_DOUBLE_PI)
-#define MATH_FLOAT_TWOPI float(MATH_DOUBLE_TWOPI)
-#define MATH_FLOAT_PIOVER2 float(MATH_DOUBLE_PIOVER2)
-#define MATH_FLOAT_PIOVER4 float(MATH_DOUBLE_PIOVER4)
-
-#define MATH_FLOAT_RADTODEGREEFACTOR float(MATH_DOUBLE_RADTODEGREEFACTOR)
-#define MATH_FLOAT_DEGREETORADFACTOR float(MATH_DOUBLE_DEGREETORADFACTOR)
-
-#define MATH_FLOAT_E float(MATH_DOUBLE_E)
-#define MATH_FLOAT_LOG2E float(MATH_DOUBLE_LOG2E)
-#define MATH_FLOAT_LOG10E float(MATH_DOUBLE_LOG10E)
-#define MATH_FLOAT_LN2 float(MATH_DOUBLE_LN2)
-#define MATH_FLOAT_LN10 float(MATH_DOUBLE_LN10)
-
-#define MATH_FLOAT_SQRT2 float(MATH_DOUBLE_SQRT2)
-#define MATH_FLOAT_SQRT1_2 float(MATH_DOUBLE_SQRT1_2)
-
-#define MATH_FLOAT_TOLERANCE 1e-5f // a default number for value equality tolerance: 1e-5, about 84*EPSILON;
-#define MATH_FLOAT_SINGULARITYRADIUS 1e-7f // about 1-cos(.025 degree), for gimbal lock numerical problems
-
-
-
-// Single-precision Math constants class.
-template<>
-class Math<float>
-{
-public:
- typedef double OtherFloatType;
-
- static inline float Tolerance() { return MATH_FLOAT_TOLERANCE; }; // a default number for value equality tolerance
- static inline float SingularityRadius() { return MATH_FLOAT_SINGULARITYRADIUS; }; // for gimbal lock numerical problems
-};
-
-// Double-precision Math constants class
-template<>
-class Math<double>
-{
-public:
- typedef float OtherFloatType;
-
- static inline double Tolerance() { return MATH_DOUBLE_TOLERANCE; }; // a default number for value equality tolerance
- static inline double SingularityRadius() { return MATH_DOUBLE_SINGULARITYRADIUS; }; // for gimbal lock numerical problems
-};
-
-typedef Math<float> Mathf;
-typedef Math<double> Mathd;
-
-// Conversion functions between degrees and radians
-// (non-templated to ensure passing int arguments causes warning)
-inline float RadToDegree(float rad) { return rad * MATH_FLOAT_RADTODEGREEFACTOR; }
-inline double RadToDegree(double rad) { return rad * MATH_DOUBLE_RADTODEGREEFACTOR; }
-
-inline float DegreeToRad(float deg) { return deg * MATH_FLOAT_DEGREETORADFACTOR; }
-inline double DegreeToRad(double deg) { return deg * MATH_DOUBLE_DEGREETORADFACTOR; }
-
-// Square function
-template<class T>
-inline T Sqr(T x) { return x*x; }
-
-// Sign: returns 0 if x == 0, -1 if x < 0, and 1 if x > 0
-template<class T>
-inline T Sign(T x) { return (x != T(0)) ? (x < T(0) ? T(-1) : T(1)) : T(0); }
-
-// Numerically stable acos function
-inline float Acos(float x) { return (x > 1.0f) ? 0.0f : (x < -1.0f) ? MATH_FLOAT_PI : acosf(x); }
-inline double Acos(double x) { return (x > 1.0) ? 0.0 : (x < -1.0) ? MATH_DOUBLE_PI : acos(x); }
-
-// Numerically stable asin function
-inline float Asin(float x) { return (x > 1.0f) ? MATH_FLOAT_PIOVER2 : (x < -1.0f) ? -MATH_FLOAT_PIOVER2 : asinf(x); }
-inline double Asin(double x) { return (x > 1.0) ? MATH_DOUBLE_PIOVER2 : (x < -1.0) ? -MATH_DOUBLE_PIOVER2 : asin(x); }
-
-#if defined(_MSC_VER)
- inline int isnan(double x) { return ::_isnan(x); }
-#elif !defined(isnan) // Some libraries #define isnan.
- inline int isnan(double x) { return ::isnan(x); }
-#endif
-
-template<class T>
-class Quat;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Vector2<>
-
-// Vector2f (Vector2d) represents a 2-dimensional vector or point in space,
-// consisting of coordinates x and y
-
-template<class T>
-class Vector2
-{
-public:
- typedef T ElementType;
- static const size_t ElementCount = 2;
-
- T x, y;
-
- Vector2() : x(0), y(0) { }
- Vector2(T x_, T y_) : x(x_), y(y_) { }
- explicit Vector2(T s) : x(s), y(s) { }
- explicit Vector2(const Vector2<typename Math<T>::OtherFloatType> &src)
- : x((T)src.x), y((T)src.y) { }
-
- static Vector2 Zero() { return Vector2(0, 0); }
-
- // C-interop support.
- typedef typename CompatibleTypes<Vector2<T> >::Type CompatibleType;
-
- Vector2(const CompatibleType& s) : x(s.x), y(s.y) { }
-
- operator const CompatibleType& () const
- {
- OVR_MATH_STATIC_ASSERT(sizeof(Vector2<T>) == sizeof(CompatibleType), "sizeof(Vector2<T>) failure");
- return reinterpret_cast<const CompatibleType&>(*this);
- }
-
-
- bool operator== (const Vector2& b) const { return x == b.x && y == b.y; }
- bool operator!= (const Vector2& b) const { return x != b.x || y != b.y; }
-
- Vector2 operator+ (const Vector2& b) const { return Vector2(x + b.x, y + b.y); }
- Vector2& operator+= (const Vector2& b) { x += b.x; y += b.y; return *this; }
- Vector2 operator- (const Vector2& b) const { return Vector2(x - b.x, y - b.y); }
- Vector2& operator-= (const Vector2& b) { x -= b.x; y -= b.y; return *this; }
- Vector2 operator- () const { return Vector2(-x, -y); }
-
- // Scalar multiplication/division scales vector.
- Vector2 operator* (T s) const { return Vector2(x*s, y*s); }
- Vector2& operator*= (T s) { x *= s; y *= s; return *this; }
-
- Vector2 operator/ (T s) const { T rcp = T(1)/s;
- return Vector2(x*rcp, y*rcp); }
- Vector2& operator/= (T s) { T rcp = T(1)/s;
- x *= rcp; y *= rcp;
- return *this; }
-
- static Vector2 Min(const Vector2& a, const Vector2& b) { return Vector2((a.x < b.x) ? a.x : b.x,
- (a.y < b.y) ? a.y : b.y); }
- static Vector2 Max(const Vector2& a, const Vector2& b) { return Vector2((a.x > b.x) ? a.x : b.x,
- (a.y > b.y) ? a.y : b.y); }
-
- Vector2 Clamped(T maxMag) const
- {
- T magSquared = LengthSq();
- if (magSquared <= Sqr(maxMag))
- return *this;
- else
- return *this * (maxMag / sqrt(magSquared));
- }
-
- // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
- bool IsEqual(const Vector2& b, T tolerance =Math<T>::Tolerance()) const
- {
- return (fabs(b.x-x) <= tolerance) &&
- (fabs(b.y-y) <= tolerance);
- }
- bool Compare(const Vector2& b, T tolerance = Math<T>::Tolerance()) const
- {
- return IsEqual(b, tolerance);
- }
-
- // Access element by index
- T& operator[] (int idx)
- {
- OVR_MATH_ASSERT(0 <= idx && idx < 2);
- return *(&x + idx);
- }
- const T& operator[] (int idx) const
- {
- OVR_MATH_ASSERT(0 <= idx && idx < 2);
- return *(&x + idx);
- }
-
- // Entry-wise product of two vectors
- Vector2 EntrywiseMultiply(const Vector2& b) const { return Vector2(x * b.x, y * b.y);}
-
-
- // Multiply and divide operators do entry-wise math. Used Dot() for dot product.
- Vector2 operator* (const Vector2& b) const { return Vector2(x * b.x, y * b.y); }
- Vector2 operator/ (const Vector2& b) const { return Vector2(x / b.x, y / b.y); }
-
- // Dot product
- // Used to calculate angle q between two vectors among other things,
- // as (A dot B) = |a||b|cos(q).
- T Dot(const Vector2& b) const { return x*b.x + y*b.y; }
-
- // Returns the angle from this vector to b, in radians.
- T Angle(const Vector2& b) const
- {
- T div = LengthSq()*b.LengthSq();
- OVR_MATH_ASSERT(div != T(0));
- T result = Acos((this->Dot(b))/sqrt(div));
- return result;
- }
-
- // Return Length of the vector squared.
- T LengthSq() const { return (x * x + y * y); }
-
- // Return vector length.
- T Length() const { return sqrt(LengthSq()); }
-
- // Returns squared distance between two points represented by vectors.
- T DistanceSq(const Vector2& b) const { return (*this - b).LengthSq(); }
-
- // Returns distance between two points represented by vectors.
- T Distance(const Vector2& b) const { return (*this - b).Length(); }
-
- // Determine if this a unit vector.
- bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
- // Normalize, convention vector length to 1.
- void Normalize()
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- *this *= s;
- }
-
- // Returns normalized (unit) version of the vector without modifying itself.
- Vector2 Normalized() const
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- return *this * s;
- }
-
- // Linearly interpolates from this vector to another.
- // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
- Vector2 Lerp(const Vector2& b, T f) const { return *this*(T(1) - f) + b*f; }
-
- // Projects this vector onto the argument; in other words,
- // A.Project(B) returns projection of vector A onto B.
- Vector2 ProjectTo(const Vector2& b) const
- {
- T l2 = b.LengthSq();
- OVR_MATH_ASSERT(l2 != T(0));
- return b * ( Dot(b) / l2 );
- }
-
- // returns true if vector b is clockwise from this vector
- bool IsClockwise(const Vector2& b) const
- {
- return (x * b.y - y * b.x) < 0;
- }
-};
-
-
-typedef Vector2<float> Vector2f;
-typedef Vector2<double> Vector2d;
-typedef Vector2<int> Vector2i;
-
-typedef Vector2<float> Point2f;
-typedef Vector2<double> Point2d;
-typedef Vector2<int> Point2i;
-
-//-------------------------------------------------------------------------------------
-// ***** Vector3<> - 3D vector of {x, y, z}
-
-//
-// Vector3f (Vector3d) represents a 3-dimensional vector or point in space,
-// consisting of coordinates x, y and z.
-
-template<class T>
-class Vector3
-{
-public:
- typedef T ElementType;
- static const size_t ElementCount = 3;
-
- T x, y, z;
-
- // FIXME: default initialization of a vector class can be very expensive in a full-blown
- // application. A few hundred thousand vector constructions is not unlikely and can add
- // up to milliseconds of time on processors like the PS3 PPU.
- Vector3() : x(0), y(0), z(0) { }
- Vector3(T x_, T y_, T z_ = 0) : x(x_), y(y_), z(z_) { }
- explicit Vector3(T s) : x(s), y(s), z(s) { }
- explicit Vector3(const Vector3<typename Math<T>::OtherFloatType> &src)
- : x((T)src.x), y((T)src.y), z((T)src.z) { }
-
- static Vector3 Zero() { return Vector3(0, 0, 0); }
-
- // C-interop support.
- typedef typename CompatibleTypes<Vector3<T> >::Type CompatibleType;
-
- Vector3(const CompatibleType& s) : x(s.x), y(s.y), z(s.z) { }
-
- operator const CompatibleType& () const
- {
- OVR_MATH_STATIC_ASSERT(sizeof(Vector3<T>) == sizeof(CompatibleType), "sizeof(Vector3<T>) failure");
- return reinterpret_cast<const CompatibleType&>(*this);
- }
-
- bool operator== (const Vector3& b) const { return x == b.x && y == b.y && z == b.z; }
- bool operator!= (const Vector3& b) const { return x != b.x || y != b.y || z != b.z; }
-
- Vector3 operator+ (const Vector3& b) const { return Vector3(x + b.x, y + b.y, z + b.z); }
- Vector3& operator+= (const Vector3& b) { x += b.x; y += b.y; z += b.z; return *this; }
- Vector3 operator- (const Vector3& b) const { return Vector3(x - b.x, y - b.y, z - b.z); }
- Vector3& operator-= (const Vector3& b) { x -= b.x; y -= b.y; z -= b.z; return *this; }
- Vector3 operator- () const { return Vector3(-x, -y, -z); }
-
- // Scalar multiplication/division scales vector.
- Vector3 operator* (T s) const { return Vector3(x*s, y*s, z*s); }
- Vector3& operator*= (T s) { x *= s; y *= s; z *= s; return *this; }
-
- Vector3 operator/ (T s) const { T rcp = T(1)/s;
- return Vector3(x*rcp, y*rcp, z*rcp); }
- Vector3& operator/= (T s) { T rcp = T(1)/s;
- x *= rcp; y *= rcp; z *= rcp;
- return *this; }
-
- static Vector3 Min(const Vector3& a, const Vector3& b)
- {
- return Vector3((a.x < b.x) ? a.x : b.x,
- (a.y < b.y) ? a.y : b.y,
- (a.z < b.z) ? a.z : b.z);
- }
- static Vector3 Max(const Vector3& a, const Vector3& b)
- {
- return Vector3((a.x > b.x) ? a.x : b.x,
- (a.y > b.y) ? a.y : b.y,
- (a.z > b.z) ? a.z : b.z);
- }
-
- Vector3 Clamped(T maxMag) const
- {
- T magSquared = LengthSq();
- if (magSquared <= Sqr(maxMag))
- return *this;
- else
- return *this * (maxMag / sqrt(magSquared));
- }
-
- // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
- bool IsEqual(const Vector3& b, T tolerance = Math<T>::Tolerance()) const
- {
- return (fabs(b.x-x) <= tolerance) &&
- (fabs(b.y-y) <= tolerance) &&
- (fabs(b.z-z) <= tolerance);
- }
- bool Compare(const Vector3& b, T tolerance = Math<T>::Tolerance()) const
- {
- return IsEqual(b, tolerance);
- }
-
- T& operator[] (int idx)
- {
- OVR_MATH_ASSERT(0 <= idx && idx < 3);
- return *(&x + idx);
- }
-
- const T& operator[] (int idx) const
- {
- OVR_MATH_ASSERT(0 <= idx && idx < 3);
- return *(&x + idx);
- }
-
- // Entrywise product of two vectors
- Vector3 EntrywiseMultiply(const Vector3& b) const { return Vector3(x * b.x,
- y * b.y,
- z * b.z);}
-
- // Multiply and divide operators do entry-wise math
- Vector3 operator* (const Vector3& b) const { return Vector3(x * b.x,
- y * b.y,
- z * b.z); }
-
- Vector3 operator/ (const Vector3& b) const { return Vector3(x / b.x,
- y / b.y,
- z / b.z); }
-
-
- // Dot product
- // Used to calculate angle q between two vectors among other things,
- // as (A dot B) = |a||b|cos(q).
- T Dot(const Vector3& b) const { return x*b.x + y*b.y + z*b.z; }
-
- // Compute cross product, which generates a normal vector.
- // Direction vector can be determined by right-hand rule: Pointing index finder in
- // direction a and middle finger in direction b, thumb will point in a.Cross(b).
- Vector3 Cross(const Vector3& b) const { return Vector3(y*b.z - z*b.y,
- z*b.x - x*b.z,
- x*b.y - y*b.x); }
-
- // Returns the angle from this vector to b, in radians.
- T Angle(const Vector3& b) const
- {
- T div = LengthSq()*b.LengthSq();
- OVR_MATH_ASSERT(div != T(0));
- T result = Acos((this->Dot(b))/sqrt(div));
- return result;
- }
-
- // Return Length of the vector squared.
- T LengthSq() const { return (x * x + y * y + z * z); }
-
- // Return vector length.
- T Length() const { return (T)sqrt(LengthSq()); }
-
- // Returns squared distance between two points represented by vectors.
- T DistanceSq(Vector3 const& b) const { return (*this - b).LengthSq(); }
-
- // Returns distance between two points represented by vectors.
- T Distance(Vector3 const& b) const { return (*this - b).Length(); }
-
- bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
- // Normalize, convention vector length to 1.
- void Normalize()
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- *this *= s;
- }
-
- // Returns normalized (unit) version of the vector without modifying itself.
- Vector3 Normalized() const
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- return *this * s;
- }
-
- // Linearly interpolates from this vector to another.
- // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
- Vector3 Lerp(const Vector3& b, T f) const { return *this*(T(1) - f) + b*f; }
-
- // Projects this vector onto the argument; in other words,
- // A.Project(B) returns projection of vector A onto B.
- Vector3 ProjectTo(const Vector3& b) const
- {
- T l2 = b.LengthSq();
- OVR_MATH_ASSERT(l2 != T(0));
- return b * ( Dot(b) / l2 );
- }
-
- // Projects this vector onto a plane defined by a normal vector
- Vector3 ProjectToPlane(const Vector3& normal) const { return *this - this->ProjectTo(normal); }
-};
-
-typedef Vector3<float> Vector3f;
-typedef Vector3<double> Vector3d;
-typedef Vector3<int32_t> Vector3i;
-
-OVR_MATH_STATIC_ASSERT((sizeof(Vector3f) == 3*sizeof(float)), "sizeof(Vector3f) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Vector3d) == 3*sizeof(double)), "sizeof(Vector3d) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Vector3i) == 3*sizeof(int32_t)), "sizeof(Vector3i) failure");
-
-typedef Vector3<float> Point3f;
-typedef Vector3<double> Point3d;
-typedef Vector3<int32_t> Point3i;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Vector4<> - 4D vector of {x, y, z, w}
-
-//
-// Vector4f (Vector4d) represents a 3-dimensional vector or point in space,
-// consisting of coordinates x, y, z and w.
-
-template<class T>
-class Vector4
-{
-public:
- typedef T ElementType;
- static const size_t ElementCount = 4;
-
- T x, y, z, w;
-
- // FIXME: default initialization of a vector class can be very expensive in a full-blown
- // application. A few hundred thousand vector constructions is not unlikely and can add
- // up to milliseconds of time on processors like the PS3 PPU.
- Vector4() : x(0), y(0), z(0), w(0) { }
- Vector4(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) { }
- explicit Vector4(T s) : x(s), y(s), z(s), w(s) { }
- explicit Vector4(const Vector3<T>& v, const T w_=T(1)) : x(v.x), y(v.y), z(v.z), w(w_) { }
- explicit Vector4(const Vector4<typename Math<T>::OtherFloatType> &src)
- : x((T)src.x), y((T)src.y), z((T)src.z), w((T)src.w) { }
-
- static Vector4 Zero() { return Vector4(0, 0, 0, 0); }
-
- // C-interop support.
- typedef typename CompatibleTypes< Vector4<T> >::Type CompatibleType;
-
- Vector4(const CompatibleType& s) : x(s.x), y(s.y), z(s.z), w(s.w) { }
-
- operator const CompatibleType& () const
- {
- OVR_MATH_STATIC_ASSERT(sizeof(Vector4<T>) == sizeof(CompatibleType), "sizeof(Vector4<T>) failure");
- return reinterpret_cast<const CompatibleType&>(*this);
- }
-
- Vector4& operator= (const Vector3<T>& other) { x=other.x; y=other.y; z=other.z; w=1; return *this; }
- bool operator== (const Vector4& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; }
- bool operator!= (const Vector4& b) const { return x != b.x || y != b.y || z != b.z || w != b.w; }
-
- Vector4 operator+ (const Vector4& b) const { return Vector4(x + b.x, y + b.y, z + b.z, w + b.w); }
- Vector4& operator+= (const Vector4& b) { x += b.x; y += b.y; z += b.z; w += b.w; return *this; }
- Vector4 operator- (const Vector4& b) const { return Vector4(x - b.x, y - b.y, z - b.z, w - b.w); }
- Vector4& operator-= (const Vector4& b) { x -= b.x; y -= b.y; z -= b.z; w -= b.w; return *this; }
- Vector4 operator- () const { return Vector4(-x, -y, -z, -w); }
-
- // Scalar multiplication/division scales vector.
- Vector4 operator* (T s) const { return Vector4(x*s, y*s, z*s, w*s); }
- Vector4& operator*= (T s) { x *= s; y *= s; z *= s; w *= s;return *this; }
-
- Vector4 operator/ (T s) const { T rcp = T(1)/s;
- return Vector4(x*rcp, y*rcp, z*rcp, w*rcp); }
- Vector4& operator/= (T s) { T rcp = T(1)/s;
- x *= rcp; y *= rcp; z *= rcp; w *= rcp;
- return *this; }
-
- static Vector4 Min(const Vector4& a, const Vector4& b)
- {
- return Vector4((a.x < b.x) ? a.x : b.x,
- (a.y < b.y) ? a.y : b.y,
- (a.z < b.z) ? a.z : b.z,
- (a.w < b.w) ? a.w : b.w);
- }
- static Vector4 Max(const Vector4& a, const Vector4& b)
- {
- return Vector4((a.x > b.x) ? a.x : b.x,
- (a.y > b.y) ? a.y : b.y,
- (a.z > b.z) ? a.z : b.z,
- (a.w > b.w) ? a.w : b.w);
- }
-
- Vector4 Clamped(T maxMag) const
- {
- T magSquared = LengthSq();
- if (magSquared <= Sqr(maxMag))
- return *this;
- else
- return *this * (maxMag / sqrt(magSquared));
- }
-
- // Compare two vectors for equality with tolerance. Returns true if vectors match withing tolerance.
- bool IsEqual(const Vector4& b, T tolerance = Math<T>::Tolerance()) const
- {
- return (fabs(b.x-x) <= tolerance) &&
- (fabs(b.y-y) <= tolerance) &&
- (fabs(b.z-z) <= tolerance) &&
- (fabs(b.w-w) <= tolerance);
- }
- bool Compare(const Vector4& b, T tolerance = Math<T>::Tolerance()) const
- {
- return IsEqual(b, tolerance);
- }
-
- T& operator[] (int idx)
- {
- OVR_MATH_ASSERT(0 <= idx && idx < 4);
- return *(&x + idx);
- }
-
- const T& operator[] (int idx) const
- {
- OVR_MATH_ASSERT(0 <= idx && idx < 4);
- return *(&x + idx);
- }
-
- // Entry wise product of two vectors
- Vector4 EntrywiseMultiply(const Vector4& b) const { return Vector4(x * b.x,
- y * b.y,
- z * b.z,
- w * b.w);}
-
- // Multiply and divide operators do entry-wise math
- Vector4 operator* (const Vector4& b) const { return Vector4(x * b.x,
- y * b.y,
- z * b.z,
- w * b.w); }
-
- Vector4 operator/ (const Vector4& b) const { return Vector4(x / b.x,
- y / b.y,
- z / b.z,
- w / b.w); }
-
-
- // Dot product
- T Dot(const Vector4& b) const { return x*b.x + y*b.y + z*b.z + w*b.w; }
-
- // Return Length of the vector squared.
- T LengthSq() const { return (x * x + y * y + z * z + w * w); }
-
- // Return vector length.
- T Length() const { return sqrt(LengthSq()); }
-
- bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
- // Normalize, convention vector length to 1.
- void Normalize()
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- *this *= s;
- }
-
- // Returns normalized (unit) version of the vector without modifying itself.
- Vector4 Normalized() const
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- return *this * s;
- }
-
- // Linearly interpolates from this vector to another.
- // Factor should be between 0.0 and 1.0, with 0 giving full value to this.
- Vector4 Lerp(const Vector4& b, T f) const { return *this*(T(1) - f) + b*f; }
-};
-
-typedef Vector4<float> Vector4f;
-typedef Vector4<double> Vector4d;
-typedef Vector4<int> Vector4i;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Bounds3
-
-// Bounds class used to describe a 3D axis aligned bounding box.
-
-template<class T>
-class Bounds3
-{
-public:
- Vector3<T> b[2];
-
- Bounds3()
- {
- }
-
- Bounds3( const Vector3<T> & mins, const Vector3<T> & maxs )
-{
- b[0] = mins;
- b[1] = maxs;
- }
-
- void Clear()
- {
- b[0].x = b[0].y = b[0].z = Math<T>::MaxValue;
- b[1].x = b[1].y = b[1].z = -Math<T>::MaxValue;
- }
-
- void AddPoint( const Vector3<T> & v )
- {
- b[0].x = (b[0].x < v.x ? b[0].x : v.x);
- b[0].y = (b[0].y < v.y ? b[0].y : v.y);
- b[0].z = (b[0].z < v.z ? b[0].z : v.z);
- b[1].x = (v.x < b[1].x ? b[1].x : v.x);
- b[1].y = (v.y < b[1].y ? b[1].y : v.y);
- b[1].z = (v.z < b[1].z ? b[1].z : v.z);
- }
-
- const Vector3<T> & GetMins() const { return b[0]; }
- const Vector3<T> & GetMaxs() const { return b[1]; }
-
- Vector3<T> & GetMins() { return b[0]; }
- Vector3<T> & GetMaxs() { return b[1]; }
-};
-
-typedef Bounds3<float> Bounds3f;
-typedef Bounds3<double> Bounds3d;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Size
-
-// Size class represents 2D size with Width, Height components.
-// Used to describe distentions of render targets, etc.
-
-template<class T>
-class Size
-{
-public:
- T w, h;
-
- Size() : w(0), h(0) { }
- Size(T w_, T h_) : w(w_), h(h_) { }
- explicit Size(T s) : w(s), h(s) { }
- explicit Size(const Size<typename Math<T>::OtherFloatType> &src)
- : w((T)src.w), h((T)src.h) { }
-
- // C-interop support.
- typedef typename CompatibleTypes<Size<T> >::Type CompatibleType;
-
- Size(const CompatibleType& s) : w(s.w), h(s.h) { }
-
- operator const CompatibleType& () const
- {
- OVR_MATH_STATIC_ASSERT(sizeof(Size<T>) == sizeof(CompatibleType), "sizeof(Size<T>) failure");
- return reinterpret_cast<const CompatibleType&>(*this);
- }
-
- bool operator== (const Size& b) const { return w == b.w && h == b.h; }
- bool operator!= (const Size& b) const { return w != b.w || h != b.h; }
-
- Size operator+ (const Size& b) const { return Size(w + b.w, h + b.h); }
- Size& operator+= (const Size& b) { w += b.w; h += b.h; return *this; }
- Size operator- (const Size& b) const { return Size(w - b.w, h - b.h); }
- Size& operator-= (const Size& b) { w -= b.w; h -= b.h; return *this; }
- Size operator- () const { return Size(-w, -h); }
- Size operator* (const Size& b) const { return Size(w * b.w, h * b.h); }
- Size& operator*= (const Size& b) { w *= b.w; h *= b.h; return *this; }
- Size operator/ (const Size& b) const { return Size(w / b.w, h / b.h); }
- Size& operator/= (const Size& b) { w /= b.w; h /= b.h; return *this; }
-
- // Scalar multiplication/division scales both components.
- Size operator* (T s) const { return Size(w*s, h*s); }
- Size& operator*= (T s) { w *= s; h *= s; return *this; }
- Size operator/ (T s) const { return Size(w/s, h/s); }
- Size& operator/= (T s) { w /= s; h /= s; return *this; }
-
- static Size Min(const Size& a, const Size& b) { return Size((a.w < b.w) ? a.w : b.w,
- (a.h < b.h) ? a.h : b.h); }
- static Size Max(const Size& a, const Size& b) { return Size((a.w > b.w) ? a.w : b.w,
- (a.h > b.h) ? a.h : b.h); }
-
- T Area() const { return w * h; }
-
- inline Vector2<T> ToVector() const { return Vector2<T>(w, h); }
-};
-
-
-typedef Size<int> Sizei;
-typedef Size<unsigned> Sizeu;
-typedef Size<float> Sizef;
-typedef Size<double> Sized;
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** Rect
-
-// Rect describes a rectangular area for rendering, that includes position and size.
-template<class T>
-class Rect
-{
-public:
- T x, y;
- T w, h;
-
- Rect() { }
- Rect(T x1, T y1, T w1, T h1) : x(x1), y(y1), w(w1), h(h1) { }
- Rect(const Vector2<T>& pos, const Size<T>& sz) : x(pos.x), y(pos.y), w(sz.w), h(sz.h) { }
- Rect(const Size<T>& sz) : x(0), y(0), w(sz.w), h(sz.h) { }
-
- // C-interop support.
- typedef typename CompatibleTypes<Rect<T> >::Type CompatibleType;
-
- Rect(const CompatibleType& s) : x(s.Pos.x), y(s.Pos.y), w(s.Size.w), h(s.Size.h) { }
-
- operator const CompatibleType& () const
- {
- OVR_MATH_STATIC_ASSERT(sizeof(Rect<T>) == sizeof(CompatibleType), "sizeof(Rect<T>) failure");
- return reinterpret_cast<const CompatibleType&>(*this);
- }
-
- Vector2<T> GetPos() const { return Vector2<T>(x, y); }
- Size<T> GetSize() const { return Size<T>(w, h); }
- void SetPos(const Vector2<T>& pos) { x = pos.x; y = pos.y; }
- void SetSize(const Size<T>& sz) { w = sz.w; h = sz.h; }
-
- bool operator == (const Rect& vp) const
- { return (x == vp.x) && (y == vp.y) && (w == vp.w) && (h == vp.h); }
- bool operator != (const Rect& vp) const
- { return !operator == (vp); }
-};
-
-typedef Rect<int> Recti;
-
-
-//-------------------------------------------------------------------------------------//
-// ***** Quat
-//
-// Quatf represents a quaternion class used for rotations.
-//
-// Quaternion multiplications are done in right-to-left order, to match the
-// behavior of matrices.
-
-
-template<class T>
-class Quat
-{
-public:
- typedef T ElementType;
- static const size_t ElementCount = 4;
-
- // x,y,z = axis*sin(angle), w = cos(angle)
- T x, y, z, w;
-
- Quat() : x(0), y(0), z(0), w(1) { }
- Quat(T x_, T y_, T z_, T w_) : x(x_), y(y_), z(z_), w(w_) { }
- explicit Quat(const Quat<typename Math<T>::OtherFloatType> &src)
- : x((T)src.x), y((T)src.y), z((T)src.z), w((T)src.w)
- {
- // NOTE: Converting a normalized Quat<float> to Quat<double>
- // will generally result in an un-normalized quaternion.
- // But we don't normalize here in case the quaternion
- // being converted is not a normalized rotation quaternion.
- }
-
- typedef typename CompatibleTypes<Quat<T> >::Type CompatibleType;
-
- // C-interop support.
- Quat(const CompatibleType& s) : x(s.x), y(s.y), z(s.z), w(s.w) { }
-
- operator CompatibleType () const
- {
- CompatibleType result;
- result.x = x;
- result.y = y;
- result.z = z;
- result.w = w;
- return result;
- }
-
- // Constructs quaternion for rotation around the axis by an angle.
- Quat(const Vector3<T>& axis, T angle)
- {
- // Make sure we don't divide by zero.
- if (axis.LengthSq() == T(0))
- {
- // Assert if the axis is zero, but the angle isn't
- OVR_MATH_ASSERT(angle == T(0));
- x = y = z = T(0); w = T(1);
- return;
- }
-
- Vector3<T> unitAxis = axis.Normalized();
- T sinHalfAngle = sin(angle * T(0.5));
-
- w = cos(angle * T(0.5));
- x = unitAxis.x * sinHalfAngle;
- y = unitAxis.y * sinHalfAngle;
- z = unitAxis.z * sinHalfAngle;
- }
-
- // Constructs quaternion for rotation around one of the coordinate axis by an angle.
- Quat(Axis A, T angle, RotateDirection d = Rotate_CCW, HandedSystem s = Handed_R)
- {
- T sinHalfAngle = s * d *sin(angle * T(0.5));
- T v[3];
- v[0] = v[1] = v[2] = T(0);
- v[A] = sinHalfAngle;
-
- w = cos(angle * T(0.5));
- x = v[0];
- y = v[1];
- z = v[2];
- }
-
- Quat operator-() { return Quat(-x, -y, -z, -w); } // unary minus
-
- static Quat Identity() { return Quat(0, 0, 0, 1); }
-
- // Compute axis and angle from quaternion
- void GetAxisAngle(Vector3<T>* axis, T* angle) const
- {
- if ( x*x + y*y + z*z > Math<T>::Tolerance() * Math<T>::Tolerance() ) {
- *axis = Vector3<T>(x, y, z).Normalized();
- *angle = 2 * Acos(w);
- if (*angle > ((T)MATH_DOUBLE_PI)) // Reduce the magnitude of the angle, if necessary
- {
- *angle = ((T)MATH_DOUBLE_TWOPI) - *angle;
- *axis = *axis * (-1);
- }
- }
- else
- {
- *axis = Vector3<T>(1, 0, 0);
- *angle= T(0);
- }
- }
-
- // Convert a quaternion to a rotation vector, also known as
- // Rodrigues vector, AxisAngle vector, SORA vector, exponential map.
- // A rotation vector describes a rotation about an axis:
- // the axis of rotation is the vector normalized,
- // the angle of rotation is the magnitude of the vector.
- Vector3<T> ToRotationVector() const
- {
- OVR_MATH_ASSERT(IsNormalized() || LengthSq() == 0);
- T s = T(0);
- T sinHalfAngle = sqrt(x*x + y*y + z*z);
- if (sinHalfAngle > T(0))
- {
- T cosHalfAngle = w;
- T halfAngle = atan2(sinHalfAngle, cosHalfAngle);
-
- // Ensure minimum rotation magnitude
- if (cosHalfAngle < 0)
- halfAngle -= T(MATH_DOUBLE_PI);
-
- s = T(2) * halfAngle / sinHalfAngle;
- }
- return Vector3<T>(x*s, y*s, z*s);
- }
-
- // Faster version of the above, optimized for use with small rotations, where rotation angle ~= sin(angle)
- inline OVR::Vector3<T> FastToRotationVector() const
- {
- OVR_MATH_ASSERT(IsNormalized());
- T s;
- T sinHalfSquared = x*x + y*y + z*z;
- if (sinHalfSquared < T(.0037)) // =~ sin(7/2 degrees)^2
- {
- // Max rotation magnitude error is about .062% at 7 degrees rotation, or about .0043 degrees
- s = T(2) * Sign(w);
- }
- else
- {
- T sinHalfAngle = sqrt(sinHalfSquared);
- T cosHalfAngle = w;
- T halfAngle = atan2(sinHalfAngle, cosHalfAngle);
-
- // Ensure minimum rotation magnitude
- if (cosHalfAngle < 0)
- halfAngle -= T(MATH_DOUBLE_PI);
-
- s = T(2) * halfAngle / sinHalfAngle;
- }
- return Vector3<T>(x*s, y*s, z*s);
- }
-
- // Given a rotation vector of form unitRotationAxis * angle,
- // returns the equivalent quaternion (unitRotationAxis * sin(angle), cos(Angle)).
- static Quat FromRotationVector(const Vector3<T>& v)
- {
- T angleSquared = v.LengthSq();
- T s = T(0);
- T c = T(1);
- if (angleSquared > T(0))
- {
- T angle = sqrt(angleSquared);
- s = sin(angle * T(0.5)) / angle; // normalize
- c = cos(angle * T(0.5));
- }
- return Quat(s*v.x, s*v.y, s*v.z, c);
- }
-
- // Faster version of above, optimized for use with small rotation magnitudes, where rotation angle =~ sin(angle).
- // If normalize is false, small-angle quaternions are returned un-normalized.
- inline static Quat FastFromRotationVector(const OVR::Vector3<T>& v, bool normalize = true)
- {
- T s, c;
- T angleSquared = v.LengthSq();
- if (angleSquared < T(0.0076)) // =~ (5 degrees*pi/180)^2
- {
- s = T(0.5);
- c = T(1.0);
- // Max rotation magnitude error (after normalization) is about .064% at 5 degrees rotation, or .0032 degrees
- if (normalize && angleSquared > 0)
- {
- // sin(angle/2)^2 ~= (angle/2)^2 and cos(angle/2)^2 ~= 1
- T invLen = T(1) / sqrt(angleSquared * T(0.25) + T(1)); // normalize
- s = s * invLen;
- c = c * invLen;
- }
- }
- else
- {
- T angle = sqrt(angleSquared);
- s = sin(angle * T(0.5)) / angle;
- c = cos(angle * T(0.5));
- }
- return Quat(s*v.x, s*v.y, s*v.z, c);
- }
-
- // Constructs the quaternion from a rotation matrix
- explicit Quat(const Matrix4<T>& m)
- {
- T trace = m.M[0][0] + m.M[1][1] + m.M[2][2];
-
- // In almost all cases, the first part is executed.
- // However, if the trace is not positive, the other
- // cases arise.
- if (trace > T(0))
- {
- T s = sqrt(trace + T(1)) * T(2); // s=4*qw
- w = T(0.25) * s;
- x = (m.M[2][1] - m.M[1][2]) / s;
- y = (m.M[0][2] - m.M[2][0]) / s;
- z = (m.M[1][0] - m.M[0][1]) / s;
- }
- else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2]))
- {
- T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2);
- w = (m.M[2][1] - m.M[1][2]) / s;
- x = T(0.25) * s;
- y = (m.M[0][1] + m.M[1][0]) / s;
- z = (m.M[2][0] + m.M[0][2]) / s;
- }
- else if (m.M[1][1] > m.M[2][2])
- {
- T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy
- w = (m.M[0][2] - m.M[2][0]) / s;
- x = (m.M[0][1] + m.M[1][0]) / s;
- y = T(0.25) * s;
- z = (m.M[1][2] + m.M[2][1]) / s;
- }
- else
- {
- T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz
- w = (m.M[1][0] - m.M[0][1]) / s;
- x = (m.M[0][2] + m.M[2][0]) / s;
- y = (m.M[1][2] + m.M[2][1]) / s;
- z = T(0.25) * s;
- }
- OVR_MATH_ASSERT(IsNormalized()); // Ensure input matrix is orthogonal
- }
-
- // Constructs the quaternion from a rotation matrix
- explicit Quat(const Matrix3<T>& m)
- {
- T trace = m.M[0][0] + m.M[1][1] + m.M[2][2];
-
- // In almost all cases, the first part is executed.
- // However, if the trace is not positive, the other
- // cases arise.
- if (trace > T(0))
- {
- T s = sqrt(trace + T(1)) * T(2); // s=4*qw
- w = T(0.25) * s;
- x = (m.M[2][1] - m.M[1][2]) / s;
- y = (m.M[0][2] - m.M[2][0]) / s;
- z = (m.M[1][0] - m.M[0][1]) / s;
- }
- else if ((m.M[0][0] > m.M[1][1])&&(m.M[0][0] > m.M[2][2]))
- {
- T s = sqrt(T(1) + m.M[0][0] - m.M[1][1] - m.M[2][2]) * T(2);
- w = (m.M[2][1] - m.M[1][2]) / s;
- x = T(0.25) * s;
- y = (m.M[0][1] + m.M[1][0]) / s;
- z = (m.M[2][0] + m.M[0][2]) / s;
- }
- else if (m.M[1][1] > m.M[2][2])
- {
- T s = sqrt(T(1) + m.M[1][1] - m.M[0][0] - m.M[2][2]) * T(2); // S=4*qy
- w = (m.M[0][2] - m.M[2][0]) / s;
- x = (m.M[0][1] + m.M[1][0]) / s;
- y = T(0.25) * s;
- z = (m.M[1][2] + m.M[2][1]) / s;
- }
- else
- {
- T s = sqrt(T(1) + m.M[2][2] - m.M[0][0] - m.M[1][1]) * T(2); // S=4*qz
- w = (m.M[1][0] - m.M[0][1]) / s;
- x = (m.M[0][2] + m.M[2][0]) / s;
- y = (m.M[1][2] + m.M[2][1]) / s;
- z = T(0.25) * s;
- }
- OVR_MATH_ASSERT(IsNormalized()); // Ensure input matrix is orthogonal
- }
-
- bool operator== (const Quat& b) const { return x == b.x && y == b.y && z == b.z && w == b.w; }
- bool operator!= (const Quat& b) const { return x != b.x || y != b.y || z != b.z || w != b.w; }
-
- Quat operator+ (const Quat& b) const { return Quat(x + b.x, y + b.y, z + b.z, w + b.w); }
- Quat& operator+= (const Quat& b) { w += b.w; x += b.x; y += b.y; z += b.z; return *this; }
- Quat operator- (const Quat& b) const { return Quat(x - b.x, y - b.y, z - b.z, w - b.w); }
- Quat& operator-= (const Quat& b) { w -= b.w; x -= b.x; y -= b.y; z -= b.z; return *this; }
-
- Quat operator* (T s) const { return Quat(x * s, y * s, z * s, w * s); }
- Quat& operator*= (T s) { w *= s; x *= s; y *= s; z *= s; return *this; }
- Quat operator/ (T s) const { T rcp = T(1)/s; return Quat(x * rcp, y * rcp, z * rcp, w *rcp); }
- Quat& operator/= (T s) { T rcp = T(1)/s; w *= rcp; x *= rcp; y *= rcp; z *= rcp; return *this; }
-
- // Compare two quats for equality within tolerance. Returns true if quats match withing tolerance.
- bool IsEqual(const Quat& b, T tolerance = Math<T>::Tolerance()) const
- {
- return Abs(Dot(b)) >= T(1) - tolerance;
- }
-
- static T Abs(const T v) { return (v >= 0) ? v : -v; }
-
- // Get Imaginary part vector
- Vector3<T> Imag() const { return Vector3<T>(x,y,z); }
-
- // Get quaternion length.
- T Length() const { return sqrt(LengthSq()); }
-
- // Get quaternion length squared.
- T LengthSq() const { return (x * x + y * y + z * z + w * w); }
-
- // Simple Euclidean distance in R^4 (not SLERP distance, but at least respects Haar measure)
- T Distance(const Quat& q) const
- {
- T d1 = (*this - q).Length();
- T d2 = (*this + q).Length(); // Antipodal point check
- return (d1 < d2) ? d1 : d2;
- }
-
- T DistanceSq(const Quat& q) const
- {
- T d1 = (*this - q).LengthSq();
- T d2 = (*this + q).LengthSq(); // Antipodal point check
- return (d1 < d2) ? d1 : d2;
- }
-
- T Dot(const Quat& q) const
- {
- return x * q.x + y * q.y + z * q.z + w * q.w;
- }
-
- // Angle between two quaternions in radians
- T Angle(const Quat& q) const
- {
- return T(2) * Acos(Abs(Dot(q)));
- }
-
- // Angle of quaternion
- T Angle() const
- {
- return T(2) * Acos(Abs(w));
- }
-
- // Normalize
- bool IsNormalized() const { return fabs(LengthSq() - T(1)) < Math<T>::Tolerance(); }
-
- void Normalize()
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- *this *= s;
- }
-
- Quat Normalized() const
- {
- T s = Length();
- if (s != T(0))
- s = T(1) / s;
- return *this * s;
- }
-
- inline void EnsureSameHemisphere(const Quat& o)
- {
- if (Dot(o) < T(0))
- {
- x = -x;
- y = -y;
- z = -z;
- w = -w;
- }
- }
-
- // Returns conjugate of the quaternion. Produces inverse rotation if quaternion is normalized.
- Quat Conj() const { return Quat(-x, -y, -z, w); }
-
- // Quaternion multiplication. Combines quaternion rotations, performing the one on the
- // right hand side first.
- Quat operator* (const Quat& b) const { return Quat(w * b.x + x * b.w + y * b.z - z * b.y,
- w * b.y - x * b.z + y * b.w + z * b.x,
- w * b.z + x * b.y - y * b.x + z * b.w,
- w * b.w - x * b.x - y * b.y - z * b.z); }
- const Quat& operator*= (const Quat& b) { *this = *this * b; return *this; }
-
- //
- // this^p normalized; same as rotating by this p times.
- Quat PowNormalized(T p) const
- {
- Vector3<T> v;
- T a;
- GetAxisAngle(&v, &a);
- return Quat(v, a * p);
- }
-
- // Compute quaternion that rotates v into alignTo: alignTo = Quat::Align(alignTo, v).Rotate(v).
- // NOTE: alignTo and v must be normalized.
- static Quat Align(const Vector3<T>& alignTo, const Vector3<T>& v)
- {
- OVR_MATH_ASSERT(alignTo.IsNormalized() && v.IsNormalized());
- Vector3<T> bisector = (v + alignTo);
- bisector.Normalize();
- T cosHalfAngle = v.Dot(bisector); // 0..1
- if (cosHalfAngle > T(0))
- {
- Vector3<T> imag = v.Cross(bisector);
- return Quat(imag.x, imag.y, imag.z, cosHalfAngle);
- }
- else
- {
- // cosHalfAngle == 0: a 180 degree rotation.
- // sinHalfAngle == 1, rotation axis is any axis perpendicular
- // to alignTo. Choose axis to include largest magnitude components
- if (fabs(v.x) > fabs(v.y))
- {
- // x or z is max magnitude component
- // = Cross(v, (0,1,0)).Normalized();
- T invLen = sqrt(v.x*v.x + v.z*v.z);
- if (invLen > T(0))
- invLen = T(1) / invLen;
- return Quat(-v.z*invLen, 0, v.x*invLen, 0);
- }
- else
- {
- // y or z is max magnitude component
- // = Cross(v, (1,0,0)).Normalized();
- T invLen = sqrt(v.y*v.y + v.z*v.z);
- if (invLen > T(0))
- invLen = T(1) / invLen;
- return Quat(0, v.z*invLen, -v.y*invLen, 0);
- }
- }
- }
-
- // Normalized linear interpolation of quaternions
- // NOTE: This function is a bad approximation of Slerp()
- // when the angle between the *this and b is large.
- // Use FastSlerp() or Slerp() instead.
- Quat Lerp(const Quat& b, T s) const
- {
- return (*this * (T(1) - s) + b * (Dot(b) < 0 ? -s : s)).Normalized();
- }
-
- // Spherical linear interpolation between rotations
- Quat Slerp(const Quat& b, T s) const
- {
- Vector3<T> delta = (b * this->Inverted()).ToRotationVector();
- return FromRotationVector(delta * s) * *this;
- }
-
- // Spherical linear interpolation: much faster for small rotations, accurate for large rotations. See FastTo/FromRotationVector
- Quat FastSlerp(const Quat& b, T s) const
- {
- Vector3<T> delta = (b * this->Inverted()).FastToRotationVector();
- return (FastFromRotationVector(delta * s, false) * *this).Normalized();
- }
-
- // Rotate transforms vector in a manner that matches Matrix rotations (counter-clockwise,
- // assuming negative direction of the axis). Standard formula: q(t) * V * q(t)^-1.
- Vector3<T> Rotate(const Vector3<T>& v) const
- {
- OVR_MATH_ASSERT(isnan(w) || IsNormalized());
-
- // rv = q * (v,0) * q'
- // Same as rv = v + real * cross(imag,v)*2 + cross(imag, cross(imag,v)*2);
-
- // uv = 2 * Imag().Cross(v);
- T uvx = T(2) * (y*v.z - z*v.y);
- T uvy = T(2) * (z*v.x - x*v.z);
- T uvz = T(2) * (x*v.y - y*v.x);
-
- // return v + Real()*uv + Imag().Cross(uv);
- return Vector3<T>(v.x + w*uvx + y*uvz - z*uvy,
- v.y + w*uvy + z*uvx - x*uvz,
- v.z + w*uvz + x*uvy - y*uvx);
- }
-
- // Rotation by inverse of *this
- Vector3<T> InverseRotate(const Vector3<T>& v) const
- {
- OVR_MATH_ASSERT(IsNormalized());
-
- // rv = q' * (v,0) * q
- // Same as rv = v + real * cross(-imag,v)*2 + cross(-imag, cross(-imag,v)*2);
- // or rv = v - real * cross(imag,v)*2 + cross(imag, cross(imag,v)*2);
-
- // uv = 2 * Imag().Cross(v);
- T uvx = T(2) * (y*v.z - z*v.y);
- T uvy = T(2) * (z*v.x - x*v.z);
- T uvz = T(2) * (x*v.y - y*v.x);
-
- // return v - Real()*uv + Imag().Cross(uv);
- return Vector3<T>(v.x - w*uvx + y*uvz - z*uvy,
- v.y - w*uvy + z*uvx - x*uvz,
- v.z - w*uvz + x*uvy - y*uvx);
- }
-
- // Inversed quaternion rotates in the opposite direction.
- Quat Inverted() const
- {
- return Quat(-x, -y, -z, w);
- }
-
- Quat Inverse() const
- {
- return Quat(-x, -y, -z, w);
- }
-
- // Sets this quaternion to the one rotates in the opposite direction.
- void Invert()
- {
- *this = Quat(-x, -y, -z, w);
- }
-
- // Time integration of constant angular velocity over dt
- Quat TimeIntegrate(Vector3<T> angularVelocity, T dt) const
- {
- // solution is: this * exp( omega*dt/2 ); FromRotationVector(v) gives exp(v*.5).
- return (*this * FastFromRotationVector(angularVelocity * dt, false)).Normalized();
- }
-
- // Time integration of constant angular acceleration and velocity over dt
- // These are the first two terms of the "Magnus expansion" of the solution
- //
- // o = o * exp( W=(W1 + W2 + W3+...) * 0.5 );
- //
- // omega1 = (omega + omegaDot*dt)
- // W1 = (omega + omega1)*dt/2
- // W2 = cross(omega, omega1)/12*dt^2 % (= -cross(omega_dot, omega)/12*dt^3)
- // Terms 3 and beyond are vanishingly small:
- // W3 = cross(omega_dot, cross(omega_dot, omega))/240*dt^5
- //
- Quat TimeIntegrate(Vector3<T> angularVelocity, Vector3<T> angularAcceleration, T dt) const
- {
- const Vector3<T>& omega = angularVelocity;
- const Vector3<T>& omegaDot = angularAcceleration;
-
- Vector3<T> omega1 = (omega + omegaDot * dt);
- Vector3<T> W = ( (omega + omega1) + omega.Cross(omega1) * (dt/T(6)) ) * (dt/T(2));
-
- // FromRotationVector(v) is exp(v*.5)
- return (*this * FastFromRotationVector(W, false)).Normalized();
- }
-
- // Decompose rotation into three rotations:
- // roll radians about Z axis, then pitch radians about X axis, then yaw radians about Y axis.
- // Call with nullptr if a return value is not needed.
- void GetYawPitchRoll(T* yaw, T* pitch, T* roll) const
- {
- return GetEulerAngles<Axis_Y, Axis_X, Axis_Z, Rotate_CCW, Handed_R>(yaw, pitch, roll);
- }
-
- // GetEulerAngles extracts Euler angles from the quaternion, in the specified order of
- // axis rotations and the specified coordinate system. Right-handed coordinate system
- // is the default, with CCW rotations while looking in the negative axis direction.
- // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned.
- // Rotation order is c, b, a:
- // rotation c around axis A3
- // is followed by rotation b around axis A2
- // is followed by rotation a around axis A1
- // rotations are CCW or CW (D) in LH or RH coordinate system (S)
- //
- template <Axis A1, Axis A2, Axis A3, RotateDirection D, HandedSystem S>
- void GetEulerAngles(T *a, T *b, T *c) const
- {
- OVR_MATH_ASSERT(IsNormalized());
- OVR_MATH_STATIC_ASSERT((A1 != A2) && (A2 != A3) && (A1 != A3), "(A1 != A2) && (A2 != A3) && (A1 != A3)");
-
- T Q[3] = { x, y, z }; //Quaternion components x,y,z
-
- T ww = w*w;
- T Q11 = Q[A1]*Q[A1];
- T Q22 = Q[A2]*Q[A2];
- T Q33 = Q[A3]*Q[A3];
-
- T psign = T(-1);
- // Determine whether even permutation
- if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3))
- psign = T(1);
-
- T s2 = psign * T(2) * (psign*w*Q[A2] + Q[A1]*Q[A3]);
-
- T singularityRadius = Math<T>::SingularityRadius();
- if (s2 < T(-1) + singularityRadius)
- { // South pole singularity
- if (a) *a = T(0);
- if (b) *b = -S*D*((T)MATH_DOUBLE_PIOVER2);
- if (c) *c = S*D*atan2(T(2)*(psign*Q[A1] * Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33 );
- }
- else if (s2 > T(1) - singularityRadius)
- { // North pole singularity
- if (a) *a = T(0);
- if (b) *b = S*D*((T)MATH_DOUBLE_PIOVER2);
- if (c) *c = S*D*atan2(T(2)*(psign*Q[A1] * Q[A2] + w*Q[A3]), ww + Q22 - Q11 - Q33);
- }
- else
- {
- if (a) *a = -S*D*atan2(T(-2)*(w*Q[A1] - psign*Q[A2] * Q[A3]), ww + Q33 - Q11 - Q22);
- if (b) *b = S*D*asin(s2);
- if (c) *c = S*D*atan2(T(2)*(w*Q[A3] - psign*Q[A1] * Q[A2]), ww + Q11 - Q22 - Q33);
- }
- }
-
- template <Axis A1, Axis A2, Axis A3, RotateDirection D>
- void GetEulerAngles(T *a, T *b, T *c) const
- { GetEulerAngles<A1, A2, A3, D, Handed_R>(a, b, c); }
-
- template <Axis A1, Axis A2, Axis A3>
- void GetEulerAngles(T *a, T *b, T *c) const
- { GetEulerAngles<A1, A2, A3, Rotate_CCW, Handed_R>(a, b, c); }
-
- // GetEulerAnglesABA extracts Euler angles from the quaternion, in the specified order of
- // axis rotations and the specified coordinate system. Right-handed coordinate system
- // is the default, with CCW rotations while looking in the negative axis direction.
- // Here a,b,c, are the Yaw/Pitch/Roll angles to be returned.
- // rotation a around axis A1
- // is followed by rotation b around axis A2
- // is followed by rotation c around axis A1
- // Rotations are CCW or CW (D) in LH or RH coordinate system (S)
- template <Axis A1, Axis A2, RotateDirection D, HandedSystem S>
- void GetEulerAnglesABA(T *a, T *b, T *c) const
- {
- OVR_MATH_ASSERT(IsNormalized());
- OVR_MATH_STATIC_ASSERT(A1 != A2, "A1 != A2");
-
- T Q[3] = {x, y, z}; // Quaternion components
-
- // Determine the missing axis that was not supplied
- int m = 3 - A1 - A2;
-
- T ww = w*w;
- T Q11 = Q[A1]*Q[A1];
- T Q22 = Q[A2]*Q[A2];
- T Qmm = Q[m]*Q[m];
-
- T psign = T(-1);
- if ((A1 + 1) % 3 == A2) // Determine whether even permutation
- {
- psign = T(1);
- }
-
- T c2 = ww + Q11 - Q22 - Qmm;
- T singularityRadius = Math<T>::SingularityRadius();
- if (c2 < T(-1) + singularityRadius)
- { // South pole singularity
- if (a) *a = T(0);
- if (b) *b = S*D*((T)MATH_DOUBLE_PI);
- if (c) *c = S*D*atan2(T(2)*(w*Q[A1] - psign*Q[A2] * Q[m]),
- ww + Q22 - Q11 - Qmm);
- }
- else if (c2 > T(1) - singularityRadius)
- { // North pole singularity
- if (a) *a = T(0);
- if (b) *b = T(0);
- if (c) *c = S*D*atan2(T(2)*(w*Q[A1] - psign*Q[A2] * Q[m]),
- ww + Q22 - Q11 - Qmm);
- }
- else
- {
- if (a) *a = S*D*atan2(psign*w*Q[m] + Q[A1] * Q[A2],
- w*Q[A2] -psign*Q[A1]*Q[m]);
- if (b) *b = S*D*acos(c2);
- if (c) *c = S*D*atan2(-psign*w*Q[m] + Q[A1] * Q[A2],
- w*Q[A2] + psign*Q[A1]*Q[m]);
- }
- }
-};
-
-typedef Quat<float> Quatf;
-typedef Quat<double> Quatd;
-
-OVR_MATH_STATIC_ASSERT((sizeof(Quatf) == 4*sizeof(float)), "sizeof(Quatf) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Quatd) == 4*sizeof(double)), "sizeof(Quatd) failure");
-
-//-------------------------------------------------------------------------------------
-// ***** Pose
-//
-// Position and orientation combined.
-//
-// This structure needs to be the same size and layout on 32-bit and 64-bit arch.
-// Update OVR_PadCheck.cpp when updating this object.
-template<class T>
-class Pose
-{
-public:
- typedef typename CompatibleTypes<Pose<T> >::Type CompatibleType;
-
- Pose() { }
- Pose(const Quat<T>& orientation, const Vector3<T>& pos)
- : Rotation(orientation), Translation(pos) { }
- Pose(const Pose& s)
- : Rotation(s.Rotation), Translation(s.Translation) { }
- Pose(const Matrix3<T>& R, const Vector3<T>& t)
- : Rotation((Quat<T>)R), Translation(t) { }
- Pose(const CompatibleType& s)
- : Rotation(s.Orientation), Translation(s.Position) { }
-
- explicit Pose(const Pose<typename Math<T>::OtherFloatType> &s)
- : Rotation(s.Rotation), Translation(s.Translation)
- {
- // Ensure normalized rotation if converting from float to double
- if (sizeof(T) > sizeof(typename Math<T>::OtherFloatType))
- Rotation.Normalize();
- }
-
- static Pose Identity() { return Pose(Quat<T>(0, 0, 0, 1), Vector3<T>(0, 0, 0)); }
-
- void SetIdentity() { Rotation = Quat<T>(0, 0, 0, 1); Translation = Vector3<T>(0, 0, 0); }
-
- // used to make things obviously broken if someone tries to use the value
- void SetInvalid() { Rotation = Quat<T>(NAN, NAN, NAN, NAN); Translation = Vector3<T>(NAN, NAN, NAN); }
-
- bool IsEqual(const Pose&b, T tolerance = Math<T>::Tolerance()) const
- {
- return Translation.IsEqual(b.Translation, tolerance) && Rotation.IsEqual(b.Rotation, tolerance);
- }
-
- operator typename CompatibleTypes<Pose<T> >::Type () const
- {
- typename CompatibleTypes<Pose<T> >::Type result;
- result.Orientation = Rotation;
- result.Position = Translation;
- return result;
- }
-
- Quat<T> Rotation;
- Vector3<T> Translation;
-
- OVR_MATH_STATIC_ASSERT((sizeof(T) == sizeof(double) || sizeof(T) == sizeof(float)), "(sizeof(T) == sizeof(double) || sizeof(T) == sizeof(float))");
-
- void ToArray(T* arr) const
- {
- T temp[7] = { Rotation.x, Rotation.y, Rotation.z, Rotation.w, Translation.x, Translation.y, Translation.z };
- for (int i = 0; i < 7; i++) arr[i] = temp[i];
- }
-
- static Pose<T> FromArray(const T* v)
- {
- Quat<T> rotation(v[0], v[1], v[2], v[3]);
- Vector3<T> translation(v[4], v[5], v[6]);
- // Ensure rotation is normalized, in case it was originally a float, stored in a .json file, etc.
- return Pose<T>(rotation.Normalized(), translation);
- }
-
- Vector3<T> Rotate(const Vector3<T>& v) const
- {
- return Rotation.Rotate(v);
- }
-
- Vector3<T> InverseRotate(const Vector3<T>& v) const
- {
- return Rotation.InverseRotate(v);
- }
-
- Vector3<T> Translate(const Vector3<T>& v) const
- {
- return v + Translation;
- }
-
- Vector3<T> Transform(const Vector3<T>& v) const
- {
- return Rotate(v) + Translation;
- }
-
- Vector3<T> InverseTransform(const Vector3<T>& v) const
- {
- return InverseRotate(v - Translation);
- }
-
-
- Vector3<T> Apply(const Vector3<T>& v) const
- {
- return Transform(v);
- }
-
- Pose operator*(const Pose& other) const
- {
- return Pose(Rotation * other.Rotation, Apply(other.Translation));
- }
-
- Pose Inverted() const
- {
- Quat<T> inv = Rotation.Inverted();
- return Pose(inv, inv.Rotate(-Translation));
- }
-
- // Interpolation between two poses: translation is interpolated with Lerp(),
- // and rotations are interpolated with Slerp().
- Pose Lerp(const Pose& b, T s)
- {
- return Pose(Rotation.Slerp(b.Rotation, s), Translation.Lerp(b.Translation, s));
- }
-
- // Similar to Lerp above, except faster in case of small rotation differences. See Quat<T>::FastSlerp.
- Pose FastLerp(const Pose& b, T s)
- {
- return Pose(Rotation.FastSlerp(b.Rotation, s), Translation.Lerp(b.Translation, s));
- }
-
- Pose TimeIntegrate(const Vector3<T>& linearVelocity, const Vector3<T>& angularVelocity, T dt) const
- {
- return Pose(
- (Rotation * Quat<T>::FastFromRotationVector(angularVelocity * dt, false)).Normalized(),
- Translation + linearVelocity * dt);
- }
-
- Pose TimeIntegrate(const Vector3<T>& linearVelocity, const Vector3<T>& linearAcceleration,
- const Vector3<T>& angularVelocity, const Vector3<T>& angularAcceleration,
- T dt) const
- {
- return Pose(Rotation.TimeIntegrate(angularVelocity, angularAcceleration, dt),
- Translation + linearVelocity*dt + linearAcceleration*dt*dt * T(0.5));
- }
-};
-
-typedef Pose<float> Posef;
-typedef Pose<double> Posed;
-
-OVR_MATH_STATIC_ASSERT((sizeof(Posed) == sizeof(Quatd) + sizeof(Vector3d)), "sizeof(Posed) failure");
-OVR_MATH_STATIC_ASSERT((sizeof(Posef) == sizeof(Quatf) + sizeof(Vector3f)), "sizeof(Posef) failure");
-
-
-//-------------------------------------------------------------------------------------
-// ***** Matrix4
-//
-// Matrix4 is a 4x4 matrix used for 3d transformations and projections.
-// Translation stored in the last column.
-// The matrix is stored in row-major order in memory, meaning that values
-// of the first row are stored before the next one.
-//
-// The arrangement of the matrix is chosen to be in Right-Handed
-// coordinate system and counterclockwise rotations when looking down
-// the axis
-//
-// Transformation Order:
-// - Transformations are applied from right to left, so the expression
-// M1 * M2 * M3 * V means that the vector V is transformed by M3 first,
-// followed by M2 and M1.
-//
-// Coordinate system: Right Handed
-//
-// Rotations: Counterclockwise when looking down the axis. All angles are in radians.
-//
-// | sx 01 02 tx | // First column (sx, 10, 20): Axis X basis vector.
-// | 10 sy 12 ty | // Second column (01, sy, 21): Axis Y basis vector.
-// | 20 21 sz tz | // Third columnt (02, 12, sz): Axis Z basis vector.
-// | 30 31 32 33 |
-//
-// The basis vectors are first three columns.
-
-template<class T>
-class Matrix4
-{
-public:
- typedef T ElementType;
- static const size_t Dimension = 4;
-
- T M[4][4];
-
- enum NoInitType { NoInit };
-
- // Construct with no memory initialization.
- Matrix4(NoInitType) { }
-
- // By default, we construct identity matrix.
- Matrix4()
- {
- M[0][0] = M[1][1] = M[2][2] = M[3][3] = T(1);
- M[0][1] = M[1][0] = M[2][3] = M[3][1] = T(0);
- M[0][2] = M[1][2] = M[2][0] = M[3][2] = T(0);
- M[0][3] = M[1][3] = M[2][1] = M[3][0] = T(0);
- }
-
- Matrix4(T m11, T m12, T m13, T m14,
- T m21, T m22, T m23, T m24,
- T m31, T m32, T m33, T m34,
- T m41, T m42, T m43, T m44)
- {
- M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = m14;
- M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = m24;
- M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = m34;
- M[3][0] = m41; M[3][1] = m42; M[3][2] = m43; M[3][3] = m44;
- }
-
- Matrix4(T m11, T m12, T m13,
- T m21, T m22, T m23,
- T m31, T m32, T m33)
- {
- M[0][0] = m11; M[0][1] = m12; M[0][2] = m13; M[0][3] = T(0);
- M[1][0] = m21; M[1][1] = m22; M[1][2] = m23; M[1][3] = T(0);
- M[2][0] = m31; M[2][1] = m32; M[2][2] = m33; M[2][3] = T(0);
- M[3][0] = T(0); M[3][1] = T(0); M[3][2] = T(0); M[3][3] = T(1);
- }
-
- explicit Matrix4(const Matrix3<T>& m)
- {
- M[0][0] = m.M[0][0]; M[0][1] = m.M[0][1]; M[0][2] = m.M[0][2]; M[0][3] = T(0);
- M[1][0] = m.M[1][0]; M[1][1] = m.M[1][1]; M[1][2] = m.M[1][2]; M[1][3] = T(0);
- M[2][0] = m.M[2][0]; M[2][1] = m.M[2][1]; M[2][2] = m.M[2][2]; M[2][3] = T(0);
- M[3][0] = T(0); M[3][1] = T(0); M[3][2] = T(0); M[3][3] = T(1);
- }
-
- explicit Matrix4(const Quat<T>& q)
- {
- OVR_MATH_ASSERT(q.IsNormalized());
- T ww = q.w*q.w;
- T xx = q.x*q.x;
- T yy = q.y*q.y;
- T zz = q.z*q.z;
-
- M[0][0] = ww + xx - yy - zz; M[0][1] = 2 * (q.x*q.y - q.w*q.z); M[0][2] = 2 * (q.x*q.z + q.w*q.y); M[0][3] = T(0);
- M[1][0] = 2 * (q.x*q.y + q.w*q.z); M[1][1] = ww - xx + yy - zz; M[1][2] = 2 * (q.y*q.z - q.w*q.x); M[1][3] = T(0);
- M[2][0] = 2 * (q.x*q.z - q.w*q.y); M[2][1] = 2 * (q.y*q.z + q.w*q.x); M[2][2] = ww - xx - yy + zz; M[2][3] = T(0);
- M[3][0] = T(0); M[3][1] = T(0); M[3][2] = T(0); M[3][3] = T(1);
- }
-
- explicit Matrix4(const Pose<T>& p)
- {
- Matrix4 result(p.Rotation);
- result.SetTranslation(p.Translation);
- *this = result;
- }
-
-
- // C-interop support
- explicit Matrix4(const Matrix4<typename Math<T>::OtherFloatType> &src)
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- M[i][j] = (T)src.M[i][j];
- }
-
- // C-interop support.
- Matrix4(const typename CompatibleTypes<Matrix4<T> >::Type& s)
- {
- OVR_MATH_STATIC_ASSERT(sizeof(s) == sizeof(Matrix4), "sizeof(s) == sizeof(Matrix4)");
- memcpy(M, s.M, sizeof(M));
- }
-
- operator typename CompatibleTypes<Matrix4<T> >::Type () const
- {
- typename CompatibleTypes<Matrix4<T> >::Type result;
- OVR_MATH_STATIC_ASSERT(sizeof(result) == sizeof(Matrix4), "sizeof(result) == sizeof(Matrix4)");
- memcpy(result.M, M, sizeof(M));
- return result;
- }
-
- void ToString(char* dest, size_t destsize) const
- {
- size_t pos = 0;
- for (int r=0; r<4; r++)
- {
- for (int c=0; c<4; c++)
- {
- pos += OVRMath_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]);
- }
- }
- }
-
- static Matrix4 FromString(const char* src)
- {
- Matrix4 result;
- if (src)
- {
- for (int r = 0; r < 4; r++)
- {
- for (int c = 0; c < 4; c++)
- {
- result.M[r][c] = (T)atof(src);
- while (*src && *src != ' ')
- {
- src++;
- }
- while (*src && *src == ' ')
- {
- src++;
- }
- }
- }
- }
- return result;
- }
-
- static Matrix4 Identity() { return Matrix4(); }
-
- void SetIdentity()
- {
- M[0][0] = M[1][1] = M[2][2] = M[3][3] = T(1);
- M[0][1] = M[1][0] = M[2][3] = M[3][1] = T(0);
- M[0][2] = M[1][2] = M[2][0] = M[3][2] = T(0);
- M[0][3] = M[1][3] = M[2][1] = M[3][0] = T(0);
- }
-
- void SetXBasis(const Vector3<T>& v)
- {
- M[0][0] = v.x;
- M[1][0] = v.y;
- M[2][0] = v.z;
- }
- Vector3<T> GetXBasis() const
- {
- return Vector3<T>(M[0][0], M[1][0], M[2][0]);
- }
-
- void SetYBasis(const Vector3<T> & v)
- {
- M[0][1] = v.x;
- M[1][1] = v.y;
- M[2][1] = v.z;
- }
- Vector3<T> GetYBasis() const
- {
- return Vector3<T>(M[0][1], M[1][1], M[2][1]);
- }
-
- void SetZBasis(const Vector3<T> & v)
- {
- M[0][2] = v.x;
- M[1][2] = v.y;
- M[2][2] = v.z;
- }
- Vector3<T> GetZBasis() const
- {
- return Vector3<T>(M[0][2], M[1][2], M[2][2]);
- }
-
- bool operator== (const Matrix4& b) const
- {
- bool isEqual = true;
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- isEqual &= (M[i][j] == b.M[i][j]);
-
- return isEqual;
- }
-
- Matrix4 operator+ (const Matrix4& b) const
- {
- Matrix4 result(*this);
- result += b;
- return result;
- }
-
- Matrix4& operator+= (const Matrix4& b)
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- M[i][j] += b.M[i][j];
- return *this;
- }
-
- Matrix4 operator- (const Matrix4& b) const
- {
- Matrix4 result(*this);
- result -= b;
- return result;
- }
-
- Matrix4& operator-= (const Matrix4& b)
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- M[i][j] -= b.M[i][j];
- return *this;
- }
-
- // Multiplies two matrices into destination with minimum copying.
- static Matrix4& Multiply(Matrix4* d, const Matrix4& a, const Matrix4& b)
- {
- OVR_MATH_ASSERT((d != &a) && (d != &b));
- int i = 0;
- do {
- d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0] + a.M[i][3] * b.M[3][0];
- d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1] + a.M[i][3] * b.M[3][1];
- d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2] + a.M[i][3] * b.M[3][2];
- d->M[i][3] = a.M[i][0] * b.M[0][3] + a.M[i][1] * b.M[1][3] + a.M[i][2] * b.M[2][3] + a.M[i][3] * b.M[3][3];
- } while((++i) < 4);
-
- return *d;
- }
-
- Matrix4 operator* (const Matrix4& b) const
- {
- Matrix4 result(Matrix4::NoInit);
- Multiply(&result, *this, b);
- return result;
- }
-
- Matrix4& operator*= (const Matrix4& b)
- {
- return Multiply(this, Matrix4(*this), b);
- }
-
- Matrix4 operator* (T s) const
- {
- Matrix4 result(*this);
- result *= s;
- return result;
- }
-
- Matrix4& operator*= (T s)
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- M[i][j] *= s;
- return *this;
- }
-
-
- Matrix4 operator/ (T s) const
- {
- Matrix4 result(*this);
- result /= s;
- return result;
- }
-
- Matrix4& operator/= (T s)
- {
- for (int i = 0; i < 4; i++)
- for (int j = 0; j < 4; j++)
- M[i][j] /= s;
- return *this;
- }
-
- Vector3<T> Transform(const Vector3<T>& v) const
- {
- const T rcpW = T(1) / (M[3][0] * v.x + M[3][1] * v.y + M[3][2] * v.z + M[3][3]);
- return Vector3<T>((M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3]) * rcpW,
- (M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3]) * rcpW,
- (M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3]) * rcpW);
- }
-
- Vector4<T> Transform(const Vector4<T>& v) const
- {
- return Vector4<T>(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z + M[0][3] * v.w,
- M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z + M[1][3] * v.w,
- M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z + M[2][3] * v.w,
- M[3][0] * v.x + M[3][1] * v.y + M[3][2] * v.z + M[3][3] * v.w);
- }
-
- Matrix4 Transposed() const
- {
- return Matrix4(M[0][0], M[1][0], M[2][0], M[3][0],
- M[0][1], M[1][1], M[2][1], M[3][1],
- M[0][2], M[1][2], M[2][2], M[3][2],
- M[0][3], M[1][3], M[2][3], M[3][3]);
- }
-
- void Transpose()
- {
- *this = Transposed();
- }
-
-
- T SubDet (const size_t* rows, const size_t* cols) const
- {
- return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]])
- - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]])
- + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]);
- }
-
- T Cofactor(size_t I, size_t J) const
- {
- const size_t indices[4][3] = {{1,2,3},{0,2,3},{0,1,3},{0,1,2}};
- return ((I+J)&1) ? -SubDet(indices[I],indices[J]) : SubDet(indices[I],indices[J]);
- }
-
- T Determinant() const
- {
- return M[0][0] * Cofactor(0,0) + M[0][1] * Cofactor(0,1) + M[0][2] * Cofactor(0,2) + M[0][3] * Cofactor(0,3);
- }
-
- Matrix4 Adjugated() const
- {
- return Matrix4(Cofactor(0,0), Cofactor(1,0), Cofactor(2,0), Cofactor(3,0),
- Cofactor(0,1), Cofactor(1,1), Cofactor(2,1), Cofactor(3,1),
- Cofactor(0,2), Cofactor(1,2), Cofactor(2,2), Cofactor(3,2),
- Cofactor(0,3), Cofactor(1,3), Cofactor(2,3), Cofactor(3,3));
- }
-
- Matrix4 Inverted() const
- {
- T det = Determinant();
- OVR_MATH_ASSERT(det != 0);
- return Adjugated() * (T(1)/det);
- }
-
- void Invert()
- {
- *this = Inverted();
- }
-
- // This is more efficient than general inverse, but ONLY works
- // correctly if it is a homogeneous transform matrix (rot + trans)
- Matrix4 InvertedHomogeneousTransform() const
- {
- // Make the inverse rotation matrix
- Matrix4 rinv = this->Transposed();
- rinv.M[3][0] = rinv.M[3][1] = rinv.M[3][2] = T(0);
- // Make the inverse translation matrix
- Vector3<T> tvinv(-M[0][3],-M[1][3],-M[2][3]);
- Matrix4 tinv = Matrix4::Translation(tvinv);
- return rinv * tinv; // "untranslate", then "unrotate"
- }
-
- // This is more efficient than general inverse, but ONLY works
- // correctly if it is a homogeneous transform matrix (rot + trans)
- void InvertHomogeneousTransform()
- {
- *this = InvertedHomogeneousTransform();
- }
-
- // Matrix to Euler Angles conversion
- // a,b,c, are the YawPitchRoll angles to be returned
- // rotation a around axis A1
- // is followed by rotation b around axis A2
- // is followed by rotation c around axis A3
- // rotations are CCW or CW (D) in LH or RH coordinate system (S)
- template <Axis A1, Axis A2, Axis A3, RotateDirection D, HandedSystem S>
- void ToEulerAngles(T *a, T *b, T *c) const
- {
- OVR_MATH_STATIC_ASSERT((A1 != A2) && (A2 != A3) && (A1 != A3), "(A1 != A2) && (A2 != A3) && (A1 != A3)");
-
- T psign = T(-1);
- if (((A1 + 1) % 3 == A2) && ((A2 + 1) % 3 == A3)) // Determine whether even permutation
- psign = T(1);
-
- T pm = psign*M[A1][A3];
- T singularityRadius = Math<T>::SingularityRadius();
- if (pm < T(-1) + singularityRadius)
- { // South pole singularity
- *a = T(0);
- *b = -S*D*((T)MATH_DOUBLE_PIOVER2);
- *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] );
- }
- else if (pm > T(1) - singularityRadius)
- { // North pole singularity
- *a = T(0);
- *b = S*D*((T)MATH_DOUBLE_PIOVER2);
- *c = S*D*atan2( psign*M[A2][A1], M[A2][A2] );
- }
- else
- { // Normal case (nonsingular)
- *a = S*D*atan2( -psign*M[A2][A3], M[A3][A3] );
- *b = S*D*asin(pm);
- *c = S*D*atan2( -psign*M[A1][A2], M[A1][A1] );
- }
- }
-
- // Matrix to Euler Angles conversion
- // a,b,c, are the YawPitchRoll angles to be returned
- // rotation a around axis A1
- // is followed by rotation b around axis A2
- // is followed by rotation c around axis A1
- // rotations are CCW or CW (D) in LH or RH coordinate system (S)
- template <Axis A1, Axis A2, RotateDirection D, HandedSystem S>
- void ToEulerAnglesABA(T *a, T *b, T *c) const
- {
- OVR_MATH_STATIC_ASSERT(A1 != A2, "A1 != A2");
-
- // Determine the axis that was not supplied
- int m = 3 - A1 - A2;
-
- T psign = T(-1);
- if ((A1 + 1) % 3 == A2) // Determine whether even permutation
- psign = T(1);
-
- T c2 = M[A1][A1];
- T singularityRadius = Math<T>::SingularityRadius();
- if (c2 < T(-1) + singularityRadius)
- { // South pole singularity
- *a = T(0);
- *b = S*D*((T)MATH_DOUBLE_PI);
- *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]);
- }
- else if (c2 > T(1) - singularityRadius)
- { // North pole singularity
- *a = T(0);
- *b = T(0);
- *c = S*D*atan2( -psign*M[A2][m],M[A2][A2]);
- }
- else
- { // Normal case (nonsingular)
- *a = S*D*atan2( M[A2][A1],-psign*M[m][A1]);
- *b = S*D*acos(c2);
- *c = S*D*atan2( M[A1][A2],psign*M[A1][m]);
- }
- }
-
- // Creates a matrix that converts the vertices from one coordinate system
- // to another.
- static Matrix4 AxisConversion(const WorldAxes& to, const WorldAxes& from)
- {
- // Holds axis values from the 'to' structure
- int toArray[3] = { to.XAxis, to.YAxis, to.ZAxis };
-
- // The inverse of the toArray
- int inv[4];
- inv[0] = inv[abs(to.XAxis)] = 0;
- inv[abs(to.YAxis)] = 1;
- inv[abs(to.ZAxis)] = 2;
-
- Matrix4 m(0, 0, 0,
- 0, 0, 0,
- 0, 0, 0);
-
- // Only three values in the matrix need to be changed to 1 or -1.
- m.M[inv[abs(from.XAxis)]][0] = T(from.XAxis/toArray[inv[abs(from.XAxis)]]);
- m.M[inv[abs(from.YAxis)]][1] = T(from.YAxis/toArray[inv[abs(from.YAxis)]]);
- m.M[inv[abs(from.ZAxis)]][2] = T(from.ZAxis/toArray[inv[abs(from.ZAxis)]]);
- return m;
- }
-
-
- // Creates a matrix for translation by vector
- static Matrix4 Translation(const Vector3<T>& v)
- {
- Matrix4 t;
- t.M[0][3] = v.x;
- t.M[1][3] = v.y;
- t.M[2][3] = v.z;
- return t;
- }
-
- // Creates a matrix for translation by vector
- static Matrix4 Translation(T x, T y, T z = T(0))
- {
- Matrix4 t;
- t.M[0][3] = x;
- t.M[1][3] = y;
- t.M[2][3] = z;
- return t;
- }
-
- // Sets the translation part
- void SetTranslation(const Vector3<T>& v)
- {
- M[0][3] = v.x;
- M[1][3] = v.y;
- M[2][3] = v.z;
- }
-
- Vector3<T> GetTranslation() const
- {
- return Vector3<T>( M[0][3], M[1][3], M[2][3] );
- }
-
- // Creates a matrix for scaling by vector
- static Matrix4 Scaling(const Vector3<T>& v)
- {
- Matrix4 t;
- t.M[0][0] = v.x;
- t.M[1][1] = v.y;
- t.M[2][2] = v.z;
- return t;
- }
-
- // Creates a matrix for scaling by vector
- static Matrix4 Scaling(T x, T y, T z)
- {
- Matrix4 t;
- t.M[0][0] = x;
- t.M[1][1] = y;
- t.M[2][2] = z;
- return t;
- }
-
- // Creates a matrix for scaling by constant
- static Matrix4 Scaling(T s)
- {
- Matrix4 t;
- t.M[0][0] = s;
- t.M[1][1] = s;
- t.M[2][2] = s;
- return t;
- }
-
- // Simple L1 distance in R^12
- T Distance(const Matrix4& m2) const
- {
- T d = fabs(M[0][0] - m2.M[0][0]) + fabs(M[0][1] - m2.M[0][1]);
- d += fabs(M[0][2] - m2.M[0][2]) + fabs(M[0][3] - m2.M[0][3]);
- d += fabs(M[1][0] - m2.M[1][0]) + fabs(M[1][1] - m2.M[1][1]);
- d += fabs(M[1][2] - m2.M[1][2]) + fabs(M[1][3] - m2.M[1][3]);
- d += fabs(M[2][0] - m2.M[2][0]) + fabs(M[2][1] - m2.M[2][1]);
- d += fabs(M[2][2] - m2.M[2][2]) + fabs(M[2][3] - m2.M[2][3]);
- d += fabs(M[3][0] - m2.M[3][0]) + fabs(M[3][1] - m2.M[3][1]);
- d += fabs(M[3][2] - m2.M[3][2]) + fabs(M[3][3] - m2.M[3][3]);
- return d;
- }
-
- // Creates a rotation matrix rotating around the X axis by 'angle' radians.
- // Just for quick testing. Not for final API. Need to remove case.
- static Matrix4 RotationAxis(Axis A, T angle, RotateDirection d, HandedSystem s)
- {
- T sina = s * d *sin(angle);
- T cosa = cos(angle);
-
- switch(A)
- {
- case Axis_X:
- return Matrix4(1, 0, 0,
- 0, cosa, -sina,
- 0, sina, cosa);
- case Axis_Y:
- return Matrix4(cosa, 0, sina,
- 0, 1, 0,
- -sina, 0, cosa);
- case Axis_Z:
- return Matrix4(cosa, -sina, 0,
- sina, cosa, 0,
- 0, 0, 1);
- default:
- return Matrix4();
- }
- }
-
-
- // Creates a rotation matrix rotating around the X axis by 'angle' radians.
- // Rotation direction is depends on the coordinate system:
- // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
- // while looking in the negative axis direction. This is the
- // same as looking down from positive axis values towards origin.
- // LHS: Positive angle values rotate clock-wise (CW), while looking in the
- // negative axis direction.
- static Matrix4 RotationX(T angle)
- {
- T sina = sin(angle);
- T cosa = cos(angle);
- return Matrix4(1, 0, 0,
- 0, cosa, -sina,
- 0, sina, cosa);
- }
-
- // Creates a rotation matrix rotating around the Y axis by 'angle' radians.
- // Rotation direction is depends on the coordinate system:
- // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
- // while looking in the negative axis direction. This is the
- // same as looking down from positive axis values towards origin.
- // LHS: Positive angle values rotate clock-wise (CW), while looking in the
- // negative axis direction.
- static Matrix4 RotationY(T angle)
- {
- T sina = (T)sin(angle);
- T cosa = (T)cos(angle);
- return Matrix4(cosa, 0, sina,
- 0, 1, 0,
- -sina, 0, cosa);
- }
-
- // Creates a rotation matrix rotating around the Z axis by 'angle' radians.
- // Rotation direction is depends on the coordinate system:
- // RHS (Oculus default): Positive angle values rotate Counter-clockwise (CCW),
- // while looking in the negative axis direction. This is the
- // same as looking down from positive axis values towards origin.
- // LHS: Positive angle values rotate clock-wise (CW), while looking in the
- // negative axis direction.
- static Matrix4 RotationZ(T angle)
- {
- T sina = sin(angle);
- T cosa = cos(angle);
- return Matrix4(cosa, -sina, 0,
- sina, cosa, 0,
- 0, 0, 1);
- }
-
- // LookAtRH creates a View transformation matrix for right-handed coordinate system.
- // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up'
- // specifying the up vector. The resulting matrix should be used with PerspectiveRH
- // projection.
- static Matrix4 LookAtRH(const Vector3<T>& eye, const Vector3<T>& at, const Vector3<T>& up)
- {
- Vector3<T> z = (eye - at).Normalized(); // Forward
- Vector3<T> x = up.Cross(z).Normalized(); // Right
- Vector3<T> y = z.Cross(x);
-
- Matrix4 m(x.x, x.y, x.z, -(x.Dot(eye)),
- y.x, y.y, y.z, -(y.Dot(eye)),
- z.x, z.y, z.z, -(z.Dot(eye)),
- 0, 0, 0, 1 );
- return m;
- }
-
- // LookAtLH creates a View transformation matrix for left-handed coordinate system.
- // The resulting matrix points camera from 'eye' towards 'at' direction, with 'up'
- // specifying the up vector.
- static Matrix4 LookAtLH(const Vector3<T>& eye, const Vector3<T>& at, const Vector3<T>& up)
- {
- Vector3<T> z = (at - eye).Normalized(); // Forward
- Vector3<T> x = up.Cross(z).Normalized(); // Right
- Vector3<T> y = z.Cross(x);
-
- Matrix4 m(x.x, x.y, x.z, -(x.Dot(eye)),
- y.x, y.y, y.z, -(y.Dot(eye)),
- z.x, z.y, z.z, -(z.Dot(eye)),
- 0, 0, 0, 1 );
- return m;
- }
-
- // PerspectiveRH creates a right-handed perspective projection matrix that can be
- // used with the Oculus sample renderer.
- // yfov - Specifies vertical field of view in radians.
- // aspect - Screen aspect ration, which is usually width/height for square pixels.
- // Note that xfov = yfov * aspect.
- // znear - Absolute value of near Z clipping clipping range.
- // zfar - Absolute value of far Z clipping clipping range (larger then near).
- // Even though RHS usually looks in the direction of negative Z, positive values
- // are expected for znear and zfar.
- static Matrix4 PerspectiveRH(T yfov, T aspect, T znear, T zfar)
- {
- Matrix4 m;
- T tanHalfFov = tan(yfov * T(0.5));
-
- m.M[0][0] = T(1) / (aspect * tanHalfFov);
- m.M[1][1] = T(1) / tanHalfFov;
- m.M[2][2] = zfar / (znear - zfar);
- m.M[3][2] = T(-1);
- m.M[2][3] = (zfar * znear) / (znear - zfar);
- m.M[3][3] = T(0);
-
- // Note: Post-projection matrix result assumes Left-Handed coordinate system,
- // with Y up, X right and Z forward. This supports positive z-buffer values.
- // This is the case even for RHS coordinate input.
- return m;
- }
-
- // PerspectiveLH creates a left-handed perspective projection matrix that can be
- // used with the Oculus sample renderer.
- // yfov - Specifies vertical field of view in radians.
- // aspect - Screen aspect ration, which is usually width/height for square pixels.
- // Note that xfov = yfov * aspect.
- // znear - Absolute value of near Z clipping clipping range.
- // zfar - Absolute value of far Z clipping clipping range (larger then near).
- static Matrix4 PerspectiveLH(T yfov, T aspect, T znear, T zfar)
- {
- Matrix4 m;
- T tanHalfFov = tan(yfov * T(0.5));
-
- m.M[0][0] = T(1) / (aspect * tanHalfFov);
- m.M[1][1] = T(1) / tanHalfFov;
- //m.M[2][2] = zfar / (znear - zfar);
- m.M[2][2] = zfar / (zfar - znear);
- m.M[3][2] = T(-1);
- m.M[2][3] = (zfar * znear) / (znear - zfar);
- m.M[3][3] = T(0);
-
- // Note: Post-projection matrix result assumes Left-Handed coordinate system,
- // with Y up, X right and Z forward. This supports positive z-buffer values.
- // This is the case even for RHS coordinate input.
- return m;
- }
-
- static Matrix4 Ortho2D(T w, T h)
- {
- Matrix4 m;
- m.M[0][0] = T(2.0)/w;
- m.M[1][1] = T(-2.0)/h;
- m.M[0][3] = T(-1.0);
- m.M[1][3] = T(1.0);
- m.M[2][2] = T(0);
- return m;
- }
-};
-
-typedef Matrix4<float> Matrix4f;
-typedef Matrix4<double> Matrix4d;
-
-//-------------------------------------------------------------------------------------
-// ***** Matrix3
-//
-// Matrix3 is a 3x3 matrix used for representing a rotation matrix.
-// The matrix is stored in row-major order in memory, meaning that values
-// of the first row are stored before the next one.
-//
-// The arrangement of the matrix is chosen to be in Right-Handed
-// coordinate system and counterclockwise rotations when looking down
-// the axis
-//
-// Transformation Order:
-// - Transformations are applied from right to left, so the expression
-// M1 * M2 * M3 * V means that the vector V is transformed by M3 first,
-// followed by M2 and M1.
-//
-// Coordinate system: Right Handed
-//
-// Rotations: Counterclockwise when looking down the axis. All angles are in radians.
-
-template<class T>
-class Matrix3
-{
-public:
- typedef T ElementType;
- static const size_t Dimension = 3;
-
- T M[3][3];
-
- enum NoInitType { NoInit };
-
- // Construct with no memory initialization.
- Matrix3(NoInitType) { }
-
- // By default, we construct identity matrix.
- Matrix3()
- {
- M[0][0] = M[1][1] = M[2][2] = T(1);
- M[0][1] = M[1][0] = M[2][0] = T(0);
- M[0][2] = M[1][2] = M[2][1] = T(0);
- }
-
- Matrix3(T m11, T m12, T m13,
- T m21, T m22, T m23,
- T m31, T m32, T m33)
- {
- M[0][0] = m11; M[0][1] = m12; M[0][2] = m13;
- M[1][0] = m21; M[1][1] = m22; M[1][2] = m23;
- M[2][0] = m31; M[2][1] = m32; M[2][2] = m33;
- }
-
- // Construction from X, Y, Z basis vectors
- Matrix3(const Vector3<T>& xBasis, const Vector3<T>& yBasis, const Vector3<T>& zBasis)
- {
- M[0][0] = xBasis.x; M[0][1] = yBasis.x; M[0][2] = zBasis.x;
- M[1][0] = xBasis.y; M[1][1] = yBasis.y; M[1][2] = zBasis.y;
- M[2][0] = xBasis.z; M[2][1] = yBasis.z; M[2][2] = zBasis.z;
- }
-
- explicit Matrix3(const Quat<T>& q)
- {
- OVR_MATH_ASSERT(q.IsNormalized());
- const T tx = q.x+q.x, ty = q.y+q.y, tz = q.z+q.z;
- const T twx = q.w*tx, twy = q.w*ty, twz = q.w*tz;
- const T txx = q.x*tx, txy = q.x*ty, txz = q.x*tz;
- const T tyy = q.y*ty, tyz = q.y*tz, tzz = q.z*tz;
- M[0][0] = T(1) - (tyy + tzz); M[0][1] = txy - twz; M[0][2] = txz + twy;
- M[1][0] = txy + twz; M[1][1] = T(1) - (txx + tzz); M[1][2] = tyz - twx;
- M[2][0] = txz - twy; M[2][1] = tyz + twx; M[2][2] = T(1) - (txx + tyy);
- }
-
- inline explicit Matrix3(T s)
- {
- M[0][0] = M[1][1] = M[2][2] = s;
- M[0][1] = M[0][2] = M[1][0] = M[1][2] = M[2][0] = M[2][1] = T(0);
- }
-
- Matrix3(T m11, T m22, T m33)
- {
- M[0][0] = m11; M[0][1] = T(0); M[0][2] = T(0);
- M[1][0] = T(0); M[1][1] = m22; M[1][2] = T(0);
- M[2][0] = T(0); M[2][1] = T(0); M[2][2] = m33;
- }
-
- explicit Matrix3(const Matrix3<typename Math<T>::OtherFloatType> &src)
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- M[i][j] = (T)src.M[i][j];
- }
-
- // C-interop support.
- Matrix3(const typename CompatibleTypes<Matrix3<T> >::Type& s)
- {
- OVR_MATH_STATIC_ASSERT(sizeof(s) == sizeof(Matrix3), "sizeof(s) == sizeof(Matrix3)");
- memcpy(M, s.M, sizeof(M));
- }
-
- operator const typename CompatibleTypes<Matrix3<T> >::Type () const
- {
- typename CompatibleTypes<Matrix3<T> >::Type result;
- OVR_MATH_STATIC_ASSERT(sizeof(result) == sizeof(Matrix3), "sizeof(result) == sizeof(Matrix3)");
- memcpy(result.M, M, sizeof(M));
- return result;
- }
-
- T operator()(int i, int j) const { return M[i][j]; }
- T& operator()(int i, int j) { return M[i][j]; }
-
- void ToString(char* dest, size_t destsize) const
- {
- size_t pos = 0;
- for (int r=0; r<3; r++)
- {
- for (int c=0; c<3; c++)
- pos += OVRMath_sprintf(dest+pos, destsize-pos, "%g ", M[r][c]);
- }
- }
-
- static Matrix3 FromString(const char* src)
- {
- Matrix3 result;
- if (src)
- {
- for (int r=0; r<3; r++)
- {
- for (int c=0; c<3; c++)
- {
- result.M[r][c] = (T)atof(src);
- while (*src && *src != ' ')
- src++;
- while (*src && *src == ' ')
- src++;
- }
- }
- }
- return result;
- }
-
- static Matrix3 Identity() { return Matrix3(); }
-
- void SetIdentity()
- {
- M[0][0] = M[1][1] = M[2][2] = T(1);
- M[0][1] = M[1][0] = M[2][0] = T(0);
- M[0][2] = M[1][2] = M[2][1] = T(0);
- }
-
- static Matrix3 Diagonal(T m00, T m11, T m22)
- {
- return Matrix3(m00, 0, 0,
- 0, m11, 0,
- 0, 0, m22);
- }
- static Matrix3 Diagonal(const Vector3<T>& v) { return Diagonal(v.x, v.y, v.z); }
-
- T Trace() const { return M[0][0] + M[1][1] + M[2][2]; }
-
- bool operator== (const Matrix3& b) const
- {
- bool isEqual = true;
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- isEqual &= (M[i][j] == b.M[i][j]);
- }
-
- return isEqual;
- }
-
- Matrix3 operator+ (const Matrix3& b) const
- {
- Matrix3<T> result(*this);
- result += b;
- return result;
- }
-
- Matrix3& operator+= (const Matrix3& b)
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- M[i][j] += b.M[i][j];
- return *this;
- }
-
- void operator= (const Matrix3& b)
- {
- for (int i = 0; i < 3; i++)
- for (int j = 0; j < 3; j++)
- M[i][j] = b.M[i][j];
- }
-
- Matrix3 operator- (const Matrix3& b) const
- {
- Matrix3 result(*this);
- result -= b;
- return result;
- }
-
- Matrix3& operator-= (const Matrix3& b)
- {
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- M[i][j] -= b.M[i][j];
- }
-
- return *this;
- }
-
- // Multiplies two matrices into destination with minimum copying.
- static Matrix3& Multiply(Matrix3* d, const Matrix3& a, const Matrix3& b)
- {
- OVR_MATH_ASSERT((d != &a) && (d != &b));
- int i = 0;
- do {
- d->M[i][0] = a.M[i][0] * b.M[0][0] + a.M[i][1] * b.M[1][0] + a.M[i][2] * b.M[2][0];
- d->M[i][1] = a.M[i][0] * b.M[0][1] + a.M[i][1] * b.M[1][1] + a.M[i][2] * b.M[2][1];
- d->M[i][2] = a.M[i][0] * b.M[0][2] + a.M[i][1] * b.M[1][2] + a.M[i][2] * b.M[2][2];
- } while((++i) < 3);
-
- return *d;
- }
-
- Matrix3 operator* (const Matrix3& b) const
- {
- Matrix3 result(Matrix3::NoInit);
- Multiply(&result, *this, b);
- return result;
- }
-
- Matrix3& operator*= (const Matrix3& b)
- {
- return Multiply(this, Matrix3(*this), b);
- }
-
- Matrix3 operator* (T s) const
- {
- Matrix3 result(*this);
- result *= s;
- return result;
- }
-
- Matrix3& operator*= (T s)
- {
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- M[i][j] *= s;
- }
-
- return *this;
- }
-
- Vector3<T> operator* (const Vector3<T> &b) const
- {
- Vector3<T> result;
- result.x = M[0][0]*b.x + M[0][1]*b.y + M[0][2]*b.z;
- result.y = M[1][0]*b.x + M[1][1]*b.y + M[1][2]*b.z;
- result.z = M[2][0]*b.x + M[2][1]*b.y + M[2][2]*b.z;
-
- return result;
- }
-
- Matrix3 operator/ (T s) const
- {
- Matrix3 result(*this);
- result /= s;
- return result;
- }
-
- Matrix3& operator/= (T s)
- {
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- M[i][j] /= s;
- }
-
- return *this;
- }
-
- Vector2<T> Transform(const Vector2<T>& v) const
- {
- const T rcpZ = T(1) / (M[2][0] * v.x + M[2][1] * v.y + M[2][2]);
- return Vector2<T>((M[0][0] * v.x + M[0][1] * v.y + M[0][2]) * rcpZ,
- (M[1][0] * v.x + M[1][1] * v.y + M[1][2]) * rcpZ);
- }
-
- Vector3<T> Transform(const Vector3<T>& v) const
- {
- return Vector3<T>(M[0][0] * v.x + M[0][1] * v.y + M[0][2] * v.z,
- M[1][0] * v.x + M[1][1] * v.y + M[1][2] * v.z,
- M[2][0] * v.x + M[2][1] * v.y + M[2][2] * v.z);
- }
-
- Matrix3 Transposed() const
- {
- return Matrix3(M[0][0], M[1][0], M[2][0],
- M[0][1], M[1][1], M[2][1],
- M[0][2], M[1][2], M[2][2]);
- }
-
- void Transpose()
- {
- *this = Transposed();
- }
-
-
- T SubDet (const size_t* rows, const size_t* cols) const
- {
- return M[rows[0]][cols[0]] * (M[rows[1]][cols[1]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[1]])
- - M[rows[0]][cols[1]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[2]] - M[rows[1]][cols[2]] * M[rows[2]][cols[0]])
- + M[rows[0]][cols[2]] * (M[rows[1]][cols[0]] * M[rows[2]][cols[1]] - M[rows[1]][cols[1]] * M[rows[2]][cols[0]]);
- }
-
-
- // M += a*b.t()
- inline void Rank1Add(const Vector3<T> &a, const Vector3<T> &b)
- {
- M[0][0] += a.x*b.x; M[0][1] += a.x*b.y; M[0][2] += a.x*b.z;
- M[1][0] += a.y*b.x; M[1][1] += a.y*b.y; M[1][2] += a.y*b.z;
- M[2][0] += a.z*b.x; M[2][1] += a.z*b.y; M[2][2] += a.z*b.z;
- }
-
- // M -= a*b.t()
- inline void Rank1Sub(const Vector3<T> &a, const Vector3<T> &b)
- {
- M[0][0] -= a.x*b.x; M[0][1] -= a.x*b.y; M[0][2] -= a.x*b.z;
- M[1][0] -= a.y*b.x; M[1][1] -= a.y*b.y; M[1][2] -= a.y*b.z;
- M[2][0] -= a.z*b.x; M[2][1] -= a.z*b.y; M[2][2] -= a.z*b.z;
- }
-
- inline Vector3<T> Col(int c) const
- {
- return Vector3<T>(M[0][c], M[1][c], M[2][c]);
- }
-
- inline Vector3<T> Row(int r) const
- {
- return Vector3<T>(M[r][0], M[r][1], M[r][2]);
- }
-
- inline Vector3<T> GetColumn(int c) const
- {
- return Vector3<T>(M[0][c], M[1][c], M[2][c]);
- }
-
- inline Vector3<T> GetRow(int r) const
- {
- return Vector3<T>(M[r][0], M[r][1], M[r][2]);
- }
-
- inline void SetColumn(int c, const Vector3<T>& v)
- {
- M[0][c] = v.x;
- M[1][c] = v.y;
- M[2][c] = v.z;
- }
-
- inline void SetRow(int r, const Vector3<T>& v)
- {
- M[r][0] = v.x;
- M[r][1] = v.y;
- M[r][2] = v.z;
- }
-
- inline T Determinant() const
- {
- const Matrix3<T>& m = *this;
- T d;
-
- d = m.M[0][0] * (m.M[1][1]*m.M[2][2] - m.M[1][2] * m.M[2][1]);
- d -= m.M[0][1] * (m.M[1][0]*m.M[2][2] - m.M[1][2] * m.M[2][0]);
- d += m.M[0][2] * (m.M[1][0]*m.M[2][1] - m.M[1][1] * m.M[2][0]);
-
- return d;
- }
-
- inline Matrix3<T> Inverse() const
- {
- Matrix3<T> a;
- const Matrix3<T>& m = *this;
- T d = Determinant();
-
- OVR_MATH_ASSERT(d != 0);
- T s = T(1)/d;
-
- a.M[0][0] = s * (m.M[1][1] * m.M[2][2] - m.M[1][2] * m.M[2][1]);
- a.M[1][0] = s * (m.M[1][2] * m.M[2][0] - m.M[1][0] * m.M[2][2]);
- a.M[2][0] = s * (m.M[1][0] * m.M[2][1] - m.M[1][1] * m.M[2][0]);
-
- a.M[0][1] = s * (m.M[0][2] * m.M[2][1] - m.M[0][1] * m.M[2][2]);
- a.M[1][1] = s * (m.M[0][0] * m.M[2][2] - m.M[0][2] * m.M[2][0]);
- a.M[2][1] = s * (m.M[0][1] * m.M[2][0] - m.M[0][0] * m.M[2][1]);
-
- a.M[0][2] = s * (m.M[0][1] * m.M[1][2] - m.M[0][2] * m.M[1][1]);
- a.M[1][2] = s * (m.M[0][2] * m.M[1][0] - m.M[0][0] * m.M[1][2]);
- a.M[2][2] = s * (m.M[0][0] * m.M[1][1] - m.M[0][1] * m.M[1][0]);
-
- return a;
- }
-
- // Outer Product of two column vectors: a * b.Transpose()
- static Matrix3 OuterProduct(const Vector3<T>& a, const Vector3<T>& b)
- {
- return Matrix3(a.x*b.x, a.x*b.y, a.x*b.z,
- a.y*b.x, a.y*b.y, a.y*b.z,
- a.z*b.x, a.z*b.y, a.z*b.z);
- }
-
- // Vector cross product as a premultiply matrix:
- // L.Cross(R) = LeftCrossAsMatrix(L) * R
- static Matrix3 LeftCrossAsMatrix(const Vector3<T>& L)
- {
- return Matrix3(
- T(0), -L.z, +L.y,
- +L.z, T(0), -L.x,
- -L.y, +L.x, T(0));
- }
-
- // Vector cross product as a premultiply matrix:
- // L.Cross(R) = RightCrossAsMatrix(R) * L
- static Matrix3 RightCrossAsMatrix(const Vector3<T>& R)
- {
- return Matrix3(
- T(0), +R.z, -R.y,
- -R.z, T(0), +R.x,
- +R.y, -R.x, T(0));
- }
-
- // Angle in radians of a rotation matrix
- // Uses identity trace(a) = 2*cos(theta) + 1
- T Angle() const
- {
- return Acos((Trace() - T(1)) * T(0.5));
- }
-
- // Angle in radians between two rotation matrices
- T Angle(const Matrix3& b) const
- {
- // Compute trace of (this->Transposed() * b)
- // This works out to sum of products of elements.
- T trace = T(0);
- for (int i = 0; i < 3; i++)
- {
- for (int j = 0; j < 3; j++)
- {
- trace += M[i][j] * b.M[i][j];
- }
- }
- return Acos((trace - T(1)) * T(0.5));
- }
-};
-
-typedef Matrix3<float> Matrix3f;
-typedef Matrix3<double> Matrix3d;
-
-//-------------------------------------------------------------------------------------
-// ***** Matrix2
-
-template<class T>
-class Matrix2
-{
-public:
- typedef T ElementType;
- static const size_t Dimension = 2;
-
- T M[2][2];
-
- enum NoInitType { NoInit };
-
- // Construct with no memory initialization.
- Matrix2(NoInitType) { }
-
- // By default, we construct identity matrix.
- Matrix2()
- {
- M[0][0] = M[1][1] = T(1);
- M[0][1] = M[1][0] = T(0);
- }
-
- Matrix2(T m11, T m12,
- T m21, T m22)
- {
- M[0][0] = m11; M[0][1] = m12;
- M[1][0] = m21; M[1][1] = m22;
- }
-
- // Construction from X, Y basis vectors
- Matrix2(const Vector2<T>& xBasis, const Vector2<T>& yBasis)
- {
- M[0][0] = xBasis.x; M[0][1] = yBasis.x;
- M[1][0] = xBasis.y; M[1][1] = yBasis.y;
- }
-
- explicit Matrix2(T s)
- {
- M[0][0] = M[1][1] = s;
- M[0][1] = M[1][0] = T(0);
- }
-
- Matrix2(T m11, T m22)
- {
- M[0][0] = m11; M[0][1] = T(0);
- M[1][0] = T(0); M[1][1] = m22;
- }
-
- explicit Matrix2(const Matrix2<typename Math<T>::OtherFloatType> &src)
- {
- M[0][0] = T(src.M[0][0]); M[0][1] = T(src.M[0][1]);
- M[1][0] = T(src.M[1][0]); M[1][1] = T(src.M[1][1]);
- }
-
- // C-interop support
- Matrix2(const typename CompatibleTypes<Matrix2<T> >::Type& s)
- {
- OVR_MATH_STATIC_ASSERT(sizeof(s) == sizeof(Matrix2), "sizeof(s) == sizeof(Matrix2)");
- memcpy(M, s.M, sizeof(M));
- }
-
- operator const typename CompatibleTypes<Matrix2<T> >::Type() const
- {
- typename CompatibleTypes<Matrix2<T> >::Type result;
- OVR_MATH_STATIC_ASSERT(sizeof(result) == sizeof(Matrix2), "sizeof(result) == sizeof(Matrix2)");
- memcpy(result.M, M, sizeof(M));
- return result;
- }
-
- T operator()(int i, int j) const { return M[i][j]; }
- T& operator()(int i, int j) { return M[i][j]; }
- const T* operator[](int i) const { return M[i]; }
- T* operator[](int i) { return M[i]; }
-
- static Matrix2 Identity() { return Matrix2(); }
-
- void SetIdentity()
- {
- M[0][0] = M[1][1] = T(1);
- M[0][1] = M[1][0] = T(0);
- }
-
- static Matrix2 Diagonal(T m00, T m11)
- {
- return Matrix2(m00, m11);
- }
- static Matrix2 Diagonal(const Vector2<T>& v) { return Matrix2(v.x, v.y); }
-
- T Trace() const { return M[0][0] + M[1][1]; }
-
- bool operator== (const Matrix2& b) const
- {
- return M[0][0] == b.M[0][0] && M[0][1] == b.M[0][1] &&
- M[1][0] == b.M[1][0] && M[1][1] == b.M[1][1];
- }
-
- Matrix2 operator+ (const Matrix2& b) const
- {
- return Matrix2(M[0][0] + b.M[0][0], M[0][1] + b.M[0][1],
- M[1][0] + b.M[1][0], M[1][1] + b.M[1][1]);
- }
-
- Matrix2& operator+= (const Matrix2& b)
- {
- M[0][0] += b.M[0][0]; M[0][1] += b.M[0][1];
- M[1][0] += b.M[1][0]; M[1][1] += b.M[1][1];
- return *this;
- }
-
- void operator= (const Matrix2& b)
- {
- M[0][0] = b.M[0][0]; M[0][1] = b.M[0][1];
- M[1][0] = b.M[1][0]; M[1][1] = b.M[1][1];
- }
-
- Matrix2 operator- (const Matrix2& b) const
- {
- return Matrix2(M[0][0] - b.M[0][0], M[0][1] - b.M[0][1],
- M[1][0] - b.M[1][0], M[1][1] - b.M[1][1]);
- }
-
- Matrix2& operator-= (const Matrix2& b)
- {
- M[0][0] -= b.M[0][0]; M[0][1] -= b.M[0][1];
- M[1][0] -= b.M[1][0]; M[1][1] -= b.M[1][1];
- return *this;
- }
-
- Matrix2 operator* (const Matrix2& b) const
- {
- return Matrix2(M[0][0] * b.M[0][0] + M[0][1] * b.M[1][0], M[0][0] * b.M[0][1] + M[0][1] * b.M[1][1],
- M[1][0] * b.M[0][0] + M[1][1] * b.M[1][0], M[1][0] * b.M[0][1] + M[1][1] * b.M[1][1]);
- }
-
- Matrix2& operator*= (const Matrix2& b)
- {
- *this = *this * b;
- return *this;
- }
-
- Matrix2 operator* (T s) const
- {
- return Matrix2(M[0][0] * s, M[0][1] * s,
- M[1][0] * s, M[1][1] * s);
- }
-
- Matrix2& operator*= (T s)
- {
- M[0][0] *= s; M[0][1] *= s;
- M[1][0] *= s; M[1][1] *= s;
- return *this;
- }
-
- Matrix2 operator/ (T s) const
- {
- return *this * (T(1) / s);
- }
-
- Matrix2& operator/= (T s)
- {
- return *this *= (T(1) / s);
- }
-
- Vector2<T> operator* (const Vector2<T> &b) const
- {
- return Vector2<T>(M[0][0] * b.x + M[0][1] * b.y,
- M[1][0] * b.x + M[1][1] * b.y);
- }
-
- Vector2<T> Transform(const Vector2<T>& v) const
- {
- return Vector2<T>(M[0][0] * v.x + M[0][1] * v.y,
- M[1][0] * v.x + M[1][1] * v.y);
- }
-
- Matrix2 Transposed() const
- {
- return Matrix2(M[0][0], M[1][0],
- M[0][1], M[1][1]);
- }
-
- void Transpose()
- {
- OVRMath_Swap(M[1][0], M[0][1]);
- }
-
- Vector2<T> GetColumn(int c) const
- {
- return Vector2<T>(M[0][c], M[1][c]);
- }
-
- Vector2<T> GetRow(int r) const
- {
- return Vector2<T>(M[r][0], M[r][1]);
- }
-
- void SetColumn(int c, const Vector2<T>& v)
- {
- M[0][c] = v.x;
- M[1][c] = v.y;
- }
-
- void SetRow(int r, const Vector2<T>& v)
- {
- M[r][0] = v.x;
- M[r][1] = v.y;
- }
-
- T Determinant() const
- {
- return M[0][0] * M[1][1] - M[0][1] * M[1][0];
- }
-
- Matrix2 Inverse() const
- {
- T rcpDet = T(1) / Determinant();
- return Matrix2( M[1][1] * rcpDet, -M[0][1] * rcpDet,
- -M[1][0] * rcpDet, M[0][0] * rcpDet);
- }
-
- // Outer Product of two column vectors: a * b.Transpose()
- static Matrix2 OuterProduct(const Vector2<T>& a, const Vector2<T>& b)
- {
- return Matrix2(a.x*b.x, a.x*b.y,
- a.y*b.x, a.y*b.y);
- }
-
- // Angle in radians between two rotation matrices
- T Angle(const Matrix2& b) const
- {
- const Matrix2& a = *this;
- return Acos(a(0, 0)*b(0, 0) + a(1, 0)*b(1, 0));
- }
-};
-
-typedef Matrix2<float> Matrix2f;
-typedef Matrix2<double> Matrix2d;
-
-//-------------------------------------------------------------------------------------
-
-template<class T>
-class SymMat3
-{
-private:
- typedef SymMat3<T> this_type;
-
-public:
- typedef T Value_t;
- // Upper symmetric
- T v[6]; // _00 _01 _02 _11 _12 _22
-
- inline SymMat3() {}
-
- inline explicit SymMat3(T s)
- {
- v[0] = v[3] = v[5] = s;
- v[1] = v[2] = v[4] = T(0);
- }
-
- inline explicit SymMat3(T a00, T a01, T a02, T a11, T a12, T a22)
- {
- v[0] = a00; v[1] = a01; v[2] = a02;
- v[3] = a11; v[4] = a12;
- v[5] = a22;
- }
-
- // Cast to symmetric Matrix3
- operator Matrix3<T>() const
- {
- return Matrix3<T>(v[0], v[1], v[2],
- v[1], v[3], v[4],
- v[2], v[4], v[5]);
- }
-
- static inline int Index(unsigned int i, unsigned int j)
- {
- return (i <= j) ? (3*i - i*(i+1)/2 + j) : (3*j - j*(j+1)/2 + i);
- }
-
- inline T operator()(int i, int j) const { return v[Index(i,j)]; }
-
- inline T &operator()(int i, int j) { return v[Index(i,j)]; }
-
- inline this_type& operator+=(const this_type& b)
- {
- v[0]+=b.v[0];
- v[1]+=b.v[1];
- v[2]+=b.v[2];
- v[3]+=b.v[3];
- v[4]+=b.v[4];
- v[5]+=b.v[5];
- return *this;
- }
-
- inline this_type& operator-=(const this_type& b)
- {
- v[0]-=b.v[0];
- v[1]-=b.v[1];
- v[2]-=b.v[2];
- v[3]-=b.v[3];
- v[4]-=b.v[4];
- v[5]-=b.v[5];
-
- return *this;
- }
-
- inline this_type& operator*=(T s)
- {
- v[0]*=s;
- v[1]*=s;
- v[2]*=s;
- v[3]*=s;
- v[4]*=s;
- v[5]*=s;
-
- return *this;
- }
-
- inline SymMat3 operator*(T s) const
- {
- SymMat3 d;
- d.v[0] = v[0]*s;
- d.v[1] = v[1]*s;
- d.v[2] = v[2]*s;
- d.v[3] = v[3]*s;
- d.v[4] = v[4]*s;
- d.v[5] = v[5]*s;
-
- return d;
- }
-
- // Multiplies two matrices into destination with minimum copying.
- static SymMat3& Multiply(SymMat3* d, const SymMat3& a, const SymMat3& b)
- {
- // _00 _01 _02 _11 _12 _22
-
- d->v[0] = a.v[0] * b.v[0];
- d->v[1] = a.v[0] * b.v[1] + a.v[1] * b.v[3];
- d->v[2] = a.v[0] * b.v[2] + a.v[1] * b.v[4];
-
- d->v[3] = a.v[3] * b.v[3];
- d->v[4] = a.v[3] * b.v[4] + a.v[4] * b.v[5];
-
- d->v[5] = a.v[5] * b.v[5];
-
- return *d;
- }
-
- inline T Determinant() const
- {
- const this_type& m = *this;
- T d;
-
- d = m(0,0) * (m(1,1)*m(2,2) - m(1,2) * m(2,1));
- d -= m(0,1) * (m(1,0)*m(2,2) - m(1,2) * m(2,0));
- d += m(0,2) * (m(1,0)*m(2,1) - m(1,1) * m(2,0));
-
- return d;
- }
-
- inline this_type Inverse() const
- {
- this_type a;
- const this_type& m = *this;
- T d = Determinant();
-
- OVR_MATH_ASSERT(d != 0);
- T s = T(1)/d;
-
- a(0,0) = s * (m(1,1) * m(2,2) - m(1,2) * m(2,1));
-
- a(0,1) = s * (m(0,2) * m(2,1) - m(0,1) * m(2,2));
- a(1,1) = s * (m(0,0) * m(2,2) - m(0,2) * m(2,0));
-
- a(0,2) = s * (m(0,1) * m(1,2) - m(0,2) * m(1,1));
- a(1,2) = s * (m(0,2) * m(1,0) - m(0,0) * m(1,2));
- a(2,2) = s * (m(0,0) * m(1,1) - m(0,1) * m(1,0));
-
- return a;
- }
-
- inline T Trace() const { return v[0] + v[3] + v[5]; }
-
- // M = a*a.t()
- inline void Rank1(const Vector3<T> &a)
- {
- v[0] = a.x*a.x; v[1] = a.x*a.y; v[2] = a.x*a.z;
- v[3] = a.y*a.y; v[4] = a.y*a.z;
- v[5] = a.z*a.z;
- }
-
- // M += a*a.t()
- inline void Rank1Add(const Vector3<T> &a)
- {
- v[0] += a.x*a.x; v[1] += a.x*a.y; v[2] += a.x*a.z;
- v[3] += a.y*a.y; v[4] += a.y*a.z;
- v[5] += a.z*a.z;
- }
-
- // M -= a*a.t()
- inline void Rank1Sub(const Vector3<T> &a)
- {
- v[0] -= a.x*a.x; v[1] -= a.x*a.y; v[2] -= a.x*a.z;
- v[3] -= a.y*a.y; v[4] -= a.y*a.z;
- v[5] -= a.z*a.z;
- }
-};
-
-typedef SymMat3<float> SymMat3f;
-typedef SymMat3<double> SymMat3d;
-
-template<class T>
-inline Matrix3<T> operator*(const SymMat3<T>& a, const SymMat3<T>& b)
-{
- #define AJB_ARBC(r,c) (a(r,0)*b(0,c)+a(r,1)*b(1,c)+a(r,2)*b(2,c))
- return Matrix3<T>(
- AJB_ARBC(0,0), AJB_ARBC(0,1), AJB_ARBC(0,2),
- AJB_ARBC(1,0), AJB_ARBC(1,1), AJB_ARBC(1,2),
- AJB_ARBC(2,0), AJB_ARBC(2,1), AJB_ARBC(2,2));
- #undef AJB_ARBC
-}
-
-template<class T>
-inline Matrix3<T> operator*(const Matrix3<T>& a, const SymMat3<T>& b)
-{
- #define AJB_ARBC(r,c) (a(r,0)*b(0,c)+a(r,1)*b(1,c)+a(r,2)*b(2,c))
- return Matrix3<T>(
- AJB_ARBC(0,0), AJB_ARBC(0,1), AJB_ARBC(0,2),
- AJB_ARBC(1,0), AJB_ARBC(1,1), AJB_ARBC(1,2),
- AJB_ARBC(2,0), AJB_ARBC(2,1), AJB_ARBC(2,2));
- #undef AJB_ARBC
-}
-
-//-------------------------------------------------------------------------------------
-// ***** Angle
-
-// Cleanly representing the algebra of 2D rotations.
-// The operations maintain the angle between -Pi and Pi, the same range as atan2.
-
-template<class T>
-class Angle
-{
-public:
- enum AngularUnits
- {
- Radians = 0,
- Degrees = 1
- };
-
- Angle() : a(0) {}
-
- // Fix the range to be between -Pi and Pi
- Angle(T a_, AngularUnits u = Radians) : a((u == Radians) ? a_ : a_*((T)MATH_DOUBLE_DEGREETORADFACTOR)) { FixRange(); }
-
- T Get(AngularUnits u = Radians) const { return (u == Radians) ? a : a*((T)MATH_DOUBLE_RADTODEGREEFACTOR); }
- void Set(const T& x, AngularUnits u = Radians) { a = (u == Radians) ? x : x*((T)MATH_DOUBLE_DEGREETORADFACTOR); FixRange(); }
- int Sign() const { if (a == 0) return 0; else return (a > 0) ? 1 : -1; }
- T Abs() const { return (a >= 0) ? a : -a; }
-
- bool operator== (const Angle& b) const { return a == b.a; }
- bool operator!= (const Angle& b) const { return a != b.a; }
-// bool operator< (const Angle& b) const { return a < a.b; }
-// bool operator> (const Angle& b) const { return a > a.b; }
-// bool operator<= (const Angle& b) const { return a <= a.b; }
-// bool operator>= (const Angle& b) const { return a >= a.b; }
-// bool operator= (const T& x) { a = x; FixRange(); }
-
- // These operations assume a is already between -Pi and Pi.
- Angle& operator+= (const Angle& b) { a = a + b.a; FastFixRange(); return *this; }
- Angle& operator+= (const T& x) { a = a + x; FixRange(); return *this; }
- Angle operator+ (const Angle& b) const { Angle res = *this; res += b; return res; }
- Angle operator+ (const T& x) const { Angle res = *this; res += x; return res; }
- Angle& operator-= (const Angle& b) { a = a - b.a; FastFixRange(); return *this; }
- Angle& operator-= (const T& x) { a = a - x; FixRange(); return *this; }
- Angle operator- (const Angle& b) const { Angle res = *this; res -= b; return res; }
- Angle operator- (const T& x) const { Angle res = *this; res -= x; return res; }
-
- T Distance(const Angle& b) { T c = fabs(a - b.a); return (c <= ((T)MATH_DOUBLE_PI)) ? c : ((T)MATH_DOUBLE_TWOPI) - c; }
-
-private:
-
- // The stored angle, which should be maintained between -Pi and Pi
- T a;
-
- // Fixes the angle range to [-Pi,Pi], but assumes no more than 2Pi away on either side
- inline void FastFixRange()
- {
- if (a < -((T)MATH_DOUBLE_PI))
- a += ((T)MATH_DOUBLE_TWOPI);
- else if (a > ((T)MATH_DOUBLE_PI))
- a -= ((T)MATH_DOUBLE_TWOPI);
- }
-
- // Fixes the angle range to [-Pi,Pi] for any given range, but slower then the fast method
- inline void FixRange()
- {
- // do nothing if the value is already in the correct range, since fmod call is expensive
- if (a >= -((T)MATH_DOUBLE_PI) && a <= ((T)MATH_DOUBLE_PI))
- return;
- a = fmod(a,((T)MATH_DOUBLE_TWOPI));
- if (a < -((T)MATH_DOUBLE_PI))
- a += ((T)MATH_DOUBLE_TWOPI);
- else if (a > ((T)MATH_DOUBLE_PI))
- a -= ((T)MATH_DOUBLE_TWOPI);
- }
-};
-
-
-typedef Angle<float> Anglef;
-typedef Angle<double> Angled;
-
-
-//-------------------------------------------------------------------------------------
-// ***** Plane
-
-// Consists of a normal vector and distance from the origin where the plane is located.
-
-template<class T>
-class Plane
-{
-public:
- Vector3<T> N;
- T D;
-
- Plane() : D(0) {}
-
- // Normals must already be normalized
- Plane(const Vector3<T>& n, T d) : N(n), D(d) {}
- Plane(T x, T y, T z, T d) : N(x,y,z), D(d) {}
-
- // construct from a point on the plane and the normal
- Plane(const Vector3<T>& p, const Vector3<T>& n) : N(n), D(-(p * n)) {}
-
- // Find the point to plane distance. The sign indicates what side of the plane the point is on (0 = point on plane).
- T TestSide(const Vector3<T>& p) const
- {
- return (N.Dot(p)) + D;
- }
-
- Plane<T> Flipped() const
- {
- return Plane(-N, -D);
- }
-
- void Flip()
- {
- N = -N;
- D = -D;
- }
-
- bool operator==(const Plane<T>& rhs) const
- {
- return (this->D == rhs.D && this->N == rhs.N);
- }
-};
-
-typedef Plane<float> Planef;
-typedef Plane<double> Planed;
-
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** ScaleAndOffset2D
-
-struct ScaleAndOffset2D
-{
- Vector2f Scale;
- Vector2f Offset;
-
- ScaleAndOffset2D(float sx = 0.0f, float sy = 0.0f, float ox = 0.0f, float oy = 0.0f)
- : Scale(sx, sy), Offset(ox, oy)
- { }
-};
-
-
-//-----------------------------------------------------------------------------------
-// ***** FovPort
-
-// FovPort describes Field Of View (FOV) of a viewport.
-// This class has values for up, down, left and right, stored in
-// tangent of the angle units to simplify calculations.
-//
-// As an example, for a standard 90 degree vertical FOV, we would
-// have: { UpTan = tan(90 degrees / 2), DownTan = tan(90 degrees / 2) }.
-//
-// CreateFromRadians/Degrees helper functions can be used to
-// access FOV in different units.
-
-
-// ***** FovPort
-
-struct FovPort
-{
- float UpTan;
- float DownTan;
- float LeftTan;
- float RightTan;
-
- FovPort ( float sideTan = 0.0f ) :
- UpTan(sideTan), DownTan(sideTan), LeftTan(sideTan), RightTan(sideTan) { }
- FovPort ( float u, float d, float l, float r ) :
- UpTan(u), DownTan(d), LeftTan(l), RightTan(r) { }
-
- // C-interop support: FovPort <-> ovrFovPort (implementation in OVR_CAPI.cpp).
- FovPort(const ovrFovPort &src)
- : UpTan(src.UpTan), DownTan(src.DownTan), LeftTan(src.LeftTan), RightTan(src.RightTan)
- { }
-
- operator ovrFovPort () const
- {
- ovrFovPort result;
- result.LeftTan = LeftTan;
- result.RightTan = RightTan;
- result.UpTan = UpTan;
- result.DownTan = DownTan;
- return result;
- }
-
- static FovPort CreateFromRadians(float horizontalFov, float verticalFov)
- {
- FovPort result;
- result.UpTan = tanf ( verticalFov * 0.5f );
- result.DownTan = tanf ( verticalFov * 0.5f );
- result.LeftTan = tanf ( horizontalFov * 0.5f );
- result.RightTan = tanf ( horizontalFov * 0.5f );
- return result;
- }
-
- static FovPort CreateFromDegrees(float horizontalFovDegrees,
- float verticalFovDegrees)
- {
- return CreateFromRadians(DegreeToRad(horizontalFovDegrees),
- DegreeToRad(verticalFovDegrees));
- }
-
- // Get Horizontal/Vertical components of Fov in radians.
- float GetVerticalFovRadians() const { return atanf(UpTan) + atanf(DownTan); }
- float GetHorizontalFovRadians() const { return atanf(LeftTan) + atanf(RightTan); }
- // Get Horizontal/Vertical components of Fov in degrees.
- float GetVerticalFovDegrees() const { return RadToDegree(GetVerticalFovRadians()); }
- float GetHorizontalFovDegrees() const { return RadToDegree(GetHorizontalFovRadians()); }
-
- // Compute maximum tangent value among all four sides.
- float GetMaxSideTan() const
- {
- return OVRMath_Max(OVRMath_Max(UpTan, DownTan), OVRMath_Max(LeftTan, RightTan));
- }
-
- static ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort tanHalfFov )
- {
- float projXScale = 2.0f / ( tanHalfFov.LeftTan + tanHalfFov.RightTan );
- float projXOffset = ( tanHalfFov.LeftTan - tanHalfFov.RightTan ) * projXScale * 0.5f;
- float projYScale = 2.0f / ( tanHalfFov.UpTan + tanHalfFov.DownTan );
- float projYOffset = ( tanHalfFov.UpTan - tanHalfFov.DownTan ) * projYScale * 0.5f;
-
- ScaleAndOffset2D result;
- result.Scale = Vector2f(projXScale, projYScale);
- result.Offset = Vector2f(projXOffset, projYOffset);
- // Hey - why is that Y.Offset negated?
- // It's because a projection matrix transforms from world coords with Y=up,
- // whereas this is from NDC which is Y=down.
-
- return result;
- }
-
- // Converts Fov Tan angle units to [-1,1] render target NDC space
- Vector2f TanAngleToRendertargetNDC(Vector2f const &tanEyeAngle)
- {
- ScaleAndOffset2D eyeToSourceNDC = CreateNDCScaleAndOffsetFromFov(*this);
- return tanEyeAngle * eyeToSourceNDC.Scale + eyeToSourceNDC.Offset;
- }
-
- // Compute per-channel minimum and maximum of Fov.
- static FovPort Min(const FovPort& a, const FovPort& b)
- {
- FovPort fov( OVRMath_Min( a.UpTan , b.UpTan ),
- OVRMath_Min( a.DownTan , b.DownTan ),
- OVRMath_Min( a.LeftTan , b.LeftTan ),
- OVRMath_Min( a.RightTan, b.RightTan ) );
- return fov;
- }
-
- static FovPort Max(const FovPort& a, const FovPort& b)
- {
- FovPort fov( OVRMath_Max( a.UpTan , b.UpTan ),
- OVRMath_Max( a.DownTan , b.DownTan ),
- OVRMath_Max( a.LeftTan , b.LeftTan ),
- OVRMath_Max( a.RightTan, b.RightTan ) );
- return fov;
- }
-};
-
-
-} // Namespace OVR
-
-
-#if defined(_MSC_VER)
- #pragma warning(pop)
-#endif
-
-
-#endif
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_StereoProjection.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_StereoProjection.h
deleted file mode 100644
index b4bc3bc7..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/Extras/OVR_StereoProjection.h
+++ /dev/null
@@ -1,70 +0,0 @@
-/************************************************************************************
-
-Filename : OVR_StereoProjection.h
-Content : Stereo projection functions
-Created : November 30, 2013
-Authors : Tom Fosyth
-
-Copyright : Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-
-Licensed under the Oculus VR Rift SDK License Version 3.3 (the "License");
-you may not use the Oculus VR Rift SDK except in compliance with the License,
-which is provided at the time of installation or download, or which
-otherwise accompanies this software in either electronic or hard copy form.
-
-You may obtain a copy of the License at
-
-http://www.oculusvr.com/licenses/LICENSE-3.3
-
-Unless required by applicable law or agreed to in writing, the Oculus VR SDK
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-
-*************************************************************************************/
-
-#ifndef OVR_StereoProjection_h
-#define OVR_StereoProjection_h
-
-
-#include "Extras/OVR_Math.h"
-
-
-namespace OVR {
-
-
-//-----------------------------------------------------------------------------------
-// ***** Stereo Enumerations
-
-// StereoEye specifies which eye we are rendering for; it is used to
-// retrieve StereoEyeParams.
-enum StereoEye
-{
- StereoEye_Left,
- StereoEye_Right,
- StereoEye_Center
-};
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** Propjection functions
-
-Matrix4f CreateProjection ( bool rightHanded, bool isOpenGL, FovPort fov, StereoEye eye,
- float zNear = 0.01f, float zFar = 10000.0f,
- bool flipZ = false, bool farAtInfinity = false);
-
-Matrix4f CreateOrthoSubProjection ( bool rightHanded, StereoEye eyeType,
- float tanHalfFovX, float tanHalfFovY,
- float unitsX, float unitsY, float distanceFromCamera,
- float interpupillaryDistance, Matrix4f const &projection,
- float zNear = 0.0f, float zFar = 0.0f,
- bool flipZ = false, bool farAtInfinity = false);
-
-ScaleAndOffset2D CreateNDCScaleAndOffsetFromFov ( FovPort fov );
-
-
-} //namespace OVR
-
-#endif // OVR_StereoProjection_h
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI.h
deleted file mode 100644
index b1ec3cc0..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI.h
+++ /dev/null
@@ -1,2116 +0,0 @@
-/********************************************************************************//**
-\file OVR_CAPI.h
-\brief C Interface to the Oculus PC SDK tracking and rendering library.
-\copyright Copyright 2014 Oculus VR, LLC All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_h // We don't use version numbers within this name, as all versioned variations of this file are currently mutually exclusive.
-#define OVR_CAPI_h ///< Header include guard
-
-
-#include "OVR_CAPI_Keys.h"
-#include "OVR_Version.h"
-#include "OVR_ErrorCode.h"
-
-
-#include <stdint.h>
-
-#if defined(_MSC_VER)
- #pragma warning(push)
- #pragma warning(disable: 4324) // structure was padded due to __declspec(align())
- #pragma warning(disable: 4359) // The alignment specified for a type is less than the alignment of the type of one of its data members
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_OS
-//
-#if !defined(OVR_OS_WIN32) && defined(_WIN32)
- #define OVR_OS_WIN32
-#endif
-
-#if !defined(OVR_OS_MAC) && defined(__APPLE__)
- #define OVR_OS_MAC
-#endif
-
-#if !defined(OVR_OS_LINUX) && defined(__linux__)
- #define OVR_OS_LINUX
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_CPP
-//
-#if !defined(OVR_CPP)
- #if defined(__cplusplus)
- #define OVR_CPP(x) x
- #else
- #define OVR_CPP(x) /* Not C++ */
- #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_CDECL
-//
-/// LibOVR calling convention for 32-bit Windows builds.
-//
-#if !defined(OVR_CDECL)
- #if defined(_WIN32)
- #define OVR_CDECL __cdecl
- #else
- #define OVR_CDECL
- #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_EXTERN_C
-//
-/// Defined as extern "C" when built from C++ code.
-//
-#if !defined(OVR_EXTERN_C)
- #ifdef __cplusplus
- #define OVR_EXTERN_C extern "C"
- #else
- #define OVR_EXTERN_C
- #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_PUBLIC_FUNCTION / OVR_PRIVATE_FUNCTION
-//
-// OVR_PUBLIC_FUNCTION - Functions that externally visible from a shared library. Corresponds to Microsoft __dllexport.
-// OVR_PUBLIC_CLASS - C++ structs and classes that are externally visible from a shared library. Corresponds to Microsoft __dllexport.
-// OVR_PRIVATE_FUNCTION - Functions that are not visible outside of a shared library. They are private to the shared library.
-// OVR_PRIVATE_CLASS - C++ structs and classes that are not visible outside of a shared library. They are private to the shared library.
-//
-// OVR_DLL_BUILD - Used to indicate that the current compilation unit is of a shared library.
-// OVR_DLL_IMPORT - Used to indicate that the current compilation unit is a user of the corresponding shared library.
-// OVR_STATIC_BUILD - used to indicate that the current compilation unit is not a shared library but rather statically linked code.
-//
-#if !defined(OVR_PUBLIC_FUNCTION)
- #if defined(OVR_DLL_BUILD)
- #if defined(_WIN32)
- #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C __declspec(dllexport) rval OVR_CDECL
- #define OVR_PUBLIC_CLASS __declspec(dllexport)
- #define OVR_PRIVATE_FUNCTION(rval) rval OVR_CDECL
- #define OVR_PRIVATE_CLASS
- #else
- #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C __attribute__((visibility("default"))) rval OVR_CDECL /* Requires GCC 4.0+ */
- #define OVR_PUBLIC_CLASS __attribute__((visibility("default"))) /* Requires GCC 4.0+ */
- #define OVR_PRIVATE_FUNCTION(rval) __attribute__((visibility("hidden"))) rval OVR_CDECL
- #define OVR_PRIVATE_CLASS __attribute__((visibility("hidden")))
- #endif
- #elif defined(OVR_DLL_IMPORT)
- #if defined(_WIN32)
- #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C __declspec(dllimport) rval OVR_CDECL
- #define OVR_PUBLIC_CLASS __declspec(dllimport)
- #else
- #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C rval OVR_CDECL
- #define OVR_PUBLIC_CLASS
- #endif
- #define OVR_PRIVATE_FUNCTION(rval) rval OVR_CDECL
- #define OVR_PRIVATE_CLASS
- #else // OVR_STATIC_BUILD
- #define OVR_PUBLIC_FUNCTION(rval) OVR_EXTERN_C rval OVR_CDECL
- #define OVR_PUBLIC_CLASS
- #define OVR_PRIVATE_FUNCTION(rval) rval OVR_CDECL
- #define OVR_PRIVATE_CLASS
- #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_EXPORT
-//
-/// Provided for backward compatibility with older versions of this library.
-//
-#if !defined(OVR_EXPORT)
- #ifdef OVR_OS_WIN32
- #define OVR_EXPORT __declspec(dllexport)
- #else
- #define OVR_EXPORT
- #endif
-#endif
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_ALIGNAS
-//
-#if !defined(OVR_ALIGNAS)
- #if defined(__GNUC__) || defined(__clang__)
- #define OVR_ALIGNAS(n) __attribute__((aligned(n)))
- #elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
- #define OVR_ALIGNAS(n) __declspec(align(n))
- #elif defined(__CC_ARM)
- #define OVR_ALIGNAS(n) __align(n)
- #else
- #error Need to define OVR_ALIGNAS
- #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_CC_HAS_FEATURE
-//
-// This is a portable way to use compile-time feature identification available
-// with some compilers in a clean way. Direct usage of __has_feature in preprocessing
-// statements of non-supporting compilers results in a preprocessing error.
-//
-// Example usage:
-// #if OVR_CC_HAS_FEATURE(is_pod)
-// if(__is_pod(T)) // If the type is plain data then we can safely memcpy it.
-// memcpy(&destObject, &srcObject, sizeof(object));
-// #endif
-//
-#if !defined(OVR_CC_HAS_FEATURE)
- #if defined(__clang__) // http://clang.llvm.org/docs/LanguageExtensions.html#id2
- #define OVR_CC_HAS_FEATURE(x) __has_feature(x)
- #else
- #define OVR_CC_HAS_FEATURE(x) 0
- #endif
-#endif
-
-
-// ------------------------------------------------------------------------
-// ***** OVR_STATIC_ASSERT
-//
-// Portable support for C++11 static_assert().
-// Acts as if the following were declared:
-// void OVR_STATIC_ASSERT(bool const_expression, const char* msg);
-//
-// Example usage:
-// OVR_STATIC_ASSERT(sizeof(int32_t) == 4, "int32_t expected to be 4 bytes.");
-
-#if !defined(OVR_STATIC_ASSERT)
- #if !(defined(__cplusplus) && (__cplusplus >= 201103L)) /* Other */ && \
- !(defined(__GXX_EXPERIMENTAL_CXX0X__)) /* GCC */ && \
- !(defined(__clang__) && defined(__cplusplus) && OVR_CC_HAS_FEATURE(cxx_static_assert)) /* clang */ && \
- !(defined(_MSC_VER) && (_MSC_VER >= 1600) && defined(__cplusplus)) /* VS2010+ */
-
- #if !defined(OVR_SA_UNUSED)
- #if defined(OVR_CC_GNU) || defined(OVR_CC_CLANG)
- #define OVR_SA_UNUSED __attribute__((unused))
- #else
- #define OVR_SA_UNUSED
- #endif
- #define OVR_SA_PASTE(a,b) a##b
- #define OVR_SA_HELP(a,b) OVR_SA_PASTE(a,b)
- #endif
-
- #if defined(__COUNTER__)
- #define OVR_STATIC_ASSERT(expression, msg) typedef char OVR_SA_HELP(compileTimeAssert, __COUNTER__) [((expression) != 0) ? 1 : -1] OVR_SA_UNUSED
- #else
- #define OVR_STATIC_ASSERT(expression, msg) typedef char OVR_SA_HELP(compileTimeAssert, __LINE__) [((expression) != 0) ? 1 : -1] OVR_SA_UNUSED
- #endif
-
- #else
- #define OVR_STATIC_ASSERT(expression, msg) static_assert(expression, msg)
- #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** Padding
-//
-/// Defines explicitly unused space for a struct.
-/// When used correcly, usage of this macro should not change the size of the struct.
-/// Compile-time and runtime behavior with and without this defined should be identical.
-///
-#if !defined(OVR_UNUSED_STRUCT_PAD)
- #define OVR_UNUSED_STRUCT_PAD(padName, size) char padName[size];
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** Word Size
-//
-/// Specifies the size of a pointer on the given platform.
-///
-#if !defined(OVR_PTR_SIZE)
- #if defined(__WORDSIZE)
- #define OVR_PTR_SIZE ((__WORDSIZE) / 8)
- #elif defined(_WIN64) || defined(__LP64__) || defined(_LP64) || defined(_M_IA64) || defined(__ia64__) || defined(__arch64__) || defined(__64BIT__) || defined(__Ptr_Is_64)
- #define OVR_PTR_SIZE 8
- #elif defined(__CC_ARM) && (__sizeof_ptr == 8)
- #define OVR_PTR_SIZE 8
- #else
- #define OVR_PTR_SIZE 4
- #endif
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** OVR_ON32 / OVR_ON64
-//
-#if OVR_PTR_SIZE == 8
- #define OVR_ON32(x)
- #define OVR_ON64(x) x
-#else
- #define OVR_ON32(x) x
- #define OVR_ON64(x)
-#endif
-
-
-//-----------------------------------------------------------------------------------
-// ***** ovrBool
-
-typedef char ovrBool; ///< Boolean type
-#define ovrFalse 0 ///< ovrBool value of false.
-#define ovrTrue 1 ///< ovrBool value of true.
-
-
-//-----------------------------------------------------------------------------------
-// ***** Simple Math Structures
-
-/// A 2D vector with integer components.
-typedef struct OVR_ALIGNAS(4) ovrVector2i_
-{
- int x, y;
-} ovrVector2i;
-
-/// A 2D size with integer components.
-typedef struct OVR_ALIGNAS(4) ovrSizei_
-{
- int w, h;
-} ovrSizei;
-
-/// A 2D rectangle with a position and size.
-/// All components are integers.
-typedef struct OVR_ALIGNAS(4) ovrRecti_
-{
- ovrVector2i Pos;
- ovrSizei Size;
-} ovrRecti;
-
-/// A quaternion rotation.
-typedef struct OVR_ALIGNAS(4) ovrQuatf_
-{
- float x, y, z, w;
-} ovrQuatf;
-
-/// A 2D vector with float components.
-typedef struct OVR_ALIGNAS(4) ovrVector2f_
-{
- float x, y;
-} ovrVector2f;
-
-/// A 3D vector with float components.
-typedef struct OVR_ALIGNAS(4) ovrVector3f_
-{
- float x, y, z;
-} ovrVector3f;
-
-/// A 4x4 matrix with float elements.
-typedef struct OVR_ALIGNAS(4) ovrMatrix4f_
-{
- float M[4][4];
-} ovrMatrix4f;
-
-
-/// Position and orientation together.
-typedef struct OVR_ALIGNAS(4) ovrPosef_
-{
- ovrQuatf Orientation;
- ovrVector3f Position;
-} ovrPosef;
-
-/// A full pose (rigid body) configuration with first and second derivatives.
-///
-/// Body refers to any object for which ovrPoseStatef is providing data.
-/// It can be the HMD, Touch controller, sensor or something else. The context
-/// depends on the usage of the struct.
-typedef struct OVR_ALIGNAS(8) ovrPoseStatef_
-{
- ovrPosef ThePose; ///< Position and orientation.
- ovrVector3f AngularVelocity; ///< Angular velocity in radians per second.
- ovrVector3f LinearVelocity; ///< Velocity in meters per second.
- ovrVector3f AngularAcceleration; ///< Angular acceleration in radians per second per second.
- ovrVector3f LinearAcceleration; ///< Acceleration in meters per second per second.
- OVR_UNUSED_STRUCT_PAD(pad0, 4) ///< \internal struct pad.
- double TimeInSeconds; ///< Absolute time that this pose refers to. \see ovr_GetTimeInSeconds
-} ovrPoseStatef;
-
-/// Describes the up, down, left, and right angles of the field of view.
-///
-/// Field Of View (FOV) tangent of the angle units.
-/// \note For a standard 90 degree vertical FOV, we would
-/// have: { UpTan = tan(90 degrees / 2), DownTan = tan(90 degrees / 2) }.
-typedef struct OVR_ALIGNAS(4) ovrFovPort_
-{
- float UpTan; ///< The tangent of the angle between the viewing vector and the top edge of the field of view.
- float DownTan; ///< The tangent of the angle between the viewing vector and the bottom edge of the field of view.
- float LeftTan; ///< The tangent of the angle between the viewing vector and the left edge of the field of view.
- float RightTan; ///< The tangent of the angle between the viewing vector and the right edge of the field of view.
-} ovrFovPort;
-
-
-//-----------------------------------------------------------------------------------
-// ***** HMD Types
-
-/// Enumerates all HMD types that we support.
-///
-/// The currently released developer kits are ovrHmd_DK1 and ovrHmd_DK2. The other enumerations are for internal use only.
-typedef enum ovrHmdType_
-{
- ovrHmd_None = 0,
- ovrHmd_DK1 = 3,
- ovrHmd_DKHD = 4,
- ovrHmd_DK2 = 6,
- ovrHmd_CB = 8,
- ovrHmd_Other = 9,
- ovrHmd_E3_2015 = 10,
- ovrHmd_ES06 = 11,
- ovrHmd_ES09 = 12,
- ovrHmd_ES11 = 13,
- ovrHmd_CV1 = 14,
-
- ovrHmd_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrHmdType;
-
-
-/// HMD capability bits reported by device.
-///
-typedef enum ovrHmdCaps_
-{
- // Read-only flags
- ovrHmdCap_DebugDevice = 0x0010, ///< <B>(read only)</B> Specifies that the HMD is a virtual debug device.
-
-
- ovrHmdCap_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrHmdCaps;
-
-
-/// Tracking capability bits reported by the device.
-/// Used with ovr_GetTrackingCaps.
-typedef enum ovrTrackingCaps_
-{
- ovrTrackingCap_Orientation = 0x0010, ///< Supports orientation tracking (IMU).
- ovrTrackingCap_MagYawCorrection = 0x0020, ///< Supports yaw drift correction via a magnetometer or other means.
- ovrTrackingCap_Position = 0x0040, ///< Supports positional tracking.
- ovrTrackingCap_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTrackingCaps;
-
-
-/// Specifies which eye is being used for rendering.
-/// This type explicitly does not include a third "NoStereo" monoscopic option, as such is
-/// not required for an HMD-centered API.
-typedef enum ovrEyeType_
-{
- ovrEye_Left = 0, ///< The left eye, from the viewer's perspective.
- ovrEye_Right = 1, ///< The right eye, from the viewer's perspective.
- ovrEye_Count = 2, ///< \internal Count of enumerated elements.
- ovrEye_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrEyeType;
-
-/// Specifies the coordinate system ovrTrackingState returns tracking poses in.
-/// Used with ovr_SetTrackingOriginType()
-typedef enum ovrTrackingOrigin_
-{
- /// \brief Tracking system origin reported at eye (HMD) height
- /// \details Prefer using this origin when your application requires
- /// matching user's current physical head pose to a virtual head pose
- /// without any regards to a the height of the floor. Cockpit-based,
- /// or 3rd-person experiences are ideal candidates.
- /// When used, all poses in ovrTrackingState are reported as an offset
- /// transform from the profile calibrated or recentered HMD pose.
- /// It is recommended that apps using this origin type call ovr_RecenterTrackingOrigin
- /// prior to starting the VR experience, but notify the user before doing so
- /// to make sure the user is in a comfortable pose, facing a comfortable
- /// direction.
- ovrTrackingOrigin_EyeLevel = 0,
- /// \brief Tracking system origin reported at floor height
- /// \details Prefer using this origin when your application requires the
- /// physical floor height to match the virtual floor height, such as
- /// standing experiences.
- /// When used, all poses in ovrTrackingState are reported as an offset
- /// transform from the profile calibrated floor pose. Calling ovr_RecenterTrackingOrigin
- /// will recenter the X & Z axes as well as yaw, but the Y-axis (i.e. height) will continue
- /// to be reported using the floor height as the origin for all poses.
- ovrTrackingOrigin_FloorLevel = 1,
- ovrTrackingOrigin_Count = 2, ///< \internal Count of enumerated elements.
- ovrTrackingOrigin_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTrackingOrigin;
-
-/// Identifies a graphics device in a platform-specific way.
-/// For Windows this is a LUID type.
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrGraphicsLuid_
-{
- // Public definition reserves space for graphics API-specific implementation
- char Reserved[8];
-} ovrGraphicsLuid;
-
-
-/// This is a complete descriptor of the HMD.
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrHmdDesc_
-{
- ovrHmdType Type; ///< The type of HMD.
- OVR_ON64(OVR_UNUSED_STRUCT_PAD(pad0, 4)) ///< \internal struct paddding.
- char ProductName[64]; ///< UTF8-encoded product identification string (e.g. "Oculus Rift DK1").
- char Manufacturer[64]; ///< UTF8-encoded HMD manufacturer identification string.
- short VendorId; ///< HID (USB) vendor identifier of the device.
- short ProductId; ///< HID (USB) product identifier of the device.
- char SerialNumber[24]; ///< HMD serial number.
- short FirmwareMajor; ///< HMD firmware major version.
- short FirmwareMinor; ///< HMD firmware minor version.
- unsigned int AvailableHmdCaps; ///< Capability bits described by ovrHmdCaps which the HMD currently supports.
- unsigned int DefaultHmdCaps; ///< Capability bits described by ovrHmdCaps which are default for the current Hmd.
- unsigned int AvailableTrackingCaps; ///< Capability bits described by ovrTrackingCaps which the system currently supports.
- unsigned int DefaultTrackingCaps; ///< Capability bits described by ovrTrackingCaps which are default for the current system.
- ovrFovPort DefaultEyeFov[ovrEye_Count]; ///< Defines the recommended FOVs for the HMD.
- ovrFovPort MaxEyeFov[ovrEye_Count]; ///< Defines the maximum FOVs for the HMD.
- ovrSizei Resolution; ///< Resolution of the full HMD screen (both eyes) in pixels.
- float DisplayRefreshRate; ///< Nominal refresh rate of the display in cycles per second at the time of HMD creation.
- OVR_ON64(OVR_UNUSED_STRUCT_PAD(pad1, 4)) ///< \internal struct paddding.
-} ovrHmdDesc;
-
-
-/// Used as an opaque pointer to an OVR session.
-typedef struct ovrHmdStruct* ovrSession;
-
-
-
-/// Bit flags describing the current status of sensor tracking.
-/// The values must be the same as in enum StatusBits
-///
-/// \see ovrTrackingState
-///
-typedef enum ovrStatusBits_
-{
- ovrStatus_OrientationTracked = 0x0001, ///< Orientation is currently tracked (connected and in use).
- ovrStatus_PositionTracked = 0x0002, ///< Position is currently tracked (false if out of range).
- ovrStatus_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrStatusBits;
-
-
-/// Specifies the description of a single sensor.
-///
-/// \see ovrGetTrackerDesc
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrTrackerDesc_
-{
- float FrustumHFovInRadians; ///< Sensor frustum horizontal field-of-view (if present).
- float FrustumVFovInRadians; ///< Sensor frustum vertical field-of-view (if present).
- float FrustumNearZInMeters; ///< Sensor frustum near Z (if present).
- float FrustumFarZInMeters; ///< Sensor frustum far Z (if present).
-} ovrTrackerDesc;
-
-
-/// Specifies sensor flags.
-///
-/// /see ovrTrackerPose
-///
-typedef enum ovrTrackerFlags_
-{
- ovrTracker_Connected = 0x0020, ///< The sensor is present, else the sensor is absent or offline.
- ovrTracker_PoseTracked = 0x0004 ///< The sensor has a valid pose, else the pose is unavailable. This will only be set if ovrTracker_Connected is set.
-} ovrTrackerFlags;
-
-
-/// Specifies the pose for a single sensor.
-///
-typedef struct OVR_ALIGNAS(8) _ovrTrackerPose
-{
- unsigned int TrackerFlags; ///< ovrTrackerFlags.
- ovrPosef Pose; ///< The sensor's pose. This pose includes sensor tilt (roll and pitch). For a leveled coordinate system use LeveledPose.
- ovrPosef LeveledPose; ///< The sensor's leveled pose, aligned with gravity. This value includes position and yaw of the sensor, but not roll and pitch. It can be used as a reference point to render real-world objects in the correct location.
- OVR_UNUSED_STRUCT_PAD(pad0, 4) ///< \internal struct pad.
-} ovrTrackerPose;
-
-
-/// Tracking state at a given absolute time (describes predicted HMD pose, etc.).
-/// Returned by ovr_GetTrackingState.
-///
-/// \see ovr_GetTrackingState
-///
-typedef struct OVR_ALIGNAS(8) ovrTrackingState_
-{
- /// Predicted head pose (and derivatives) at the requested absolute time.
- ovrPoseStatef HeadPose;
-
- /// HeadPose tracking status described by ovrStatusBits.
- unsigned int StatusFlags;
-
- /// The most recent calculated pose for each hand when hand controller tracking is present.
- /// HandPoses[ovrHand_Left] refers to the left hand and HandPoses[ovrHand_Right] to the right hand.
- /// These values can be combined with ovrInputState for complete hand controller information.
- ovrPoseStatef HandPoses[2];
-
- /// HandPoses status flags described by ovrStatusBits.
- /// Only ovrStatus_OrientationTracked and ovrStatus_PositionTracked are reported.
- unsigned int HandStatusFlags[2];
-
- /// The pose of the origin captured during calibration.
- /// Like all other poses here, this is expressed in the space set by ovr_RecenterTrackingOrigin,
- /// and so will change every time that is called. This pose can be used to calculate
- /// where the calibrated origin lands in the new recentered space.
- /// If an application never calls ovr_RecenterTrackingOrigin, expect this value to be the identity
- /// pose and as such will point respective origin based on ovrTrackingOrigin requested when
- /// calling ovr_GetTrackingState.
- ovrPosef CalibratedOrigin;
-
-} ovrTrackingState;
-
-
-/// Rendering information for each eye. Computed by ovr_GetRenderDesc() based on the
-/// specified FOV. Note that the rendering viewport is not included
-/// here as it can be specified separately and modified per frame by
-/// passing different Viewport values in the layer structure.
-///
-/// \see ovr_GetRenderDesc
-///
-typedef struct OVR_ALIGNAS(4) ovrEyeRenderDesc_
-{
- ovrEyeType Eye; ///< The eye index to which this instance corresponds.
- ovrFovPort Fov; ///< The field of view.
- ovrRecti DistortedViewport; ///< Distortion viewport.
- ovrVector2f PixelsPerTanAngleAtCenter; ///< How many display pixels will fit in tan(angle) = 1.
- ovrVector3f HmdToEyeOffset; ///< Translation of each eye, in meters.
-} ovrEyeRenderDesc;
-
-
-/// Projection information for ovrLayerEyeFovDepth.
-///
-/// Use the utility function ovrTimewarpProjectionDesc_FromProjection to
-/// generate this structure from the application's projection matrix.
-///
-/// \see ovrLayerEyeFovDepth, ovrTimewarpProjectionDesc_FromProjection
-///
-typedef struct OVR_ALIGNAS(4) ovrTimewarpProjectionDesc_
-{
- float Projection22; ///< Projection matrix element [2][2].
- float Projection23; ///< Projection matrix element [2][3].
- float Projection32; ///< Projection matrix element [3][2].
-} ovrTimewarpProjectionDesc;
-
-
-/// Contains the data necessary to properly calculate position info for various layer types.
-/// - HmdToEyeOffset is the same value pair provided in ovrEyeRenderDesc.
-/// - HmdSpaceToWorldScaleInMeters is used to scale player motion into in-application units.
-/// In other words, it is how big an in-application unit is in the player's physical meters.
-/// For example, if the application uses inches as its units then HmdSpaceToWorldScaleInMeters would be 0.0254.
-/// Note that if you are scaling the player in size, this must also scale. So if your application
-/// units are inches, but you're shrinking the player to half their normal size, then
-/// HmdSpaceToWorldScaleInMeters would be 0.0254*2.0.
-///
-/// \see ovrEyeRenderDesc, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(4) ovrViewScaleDesc_
-{
- ovrVector3f HmdToEyeOffset[ovrEye_Count]; ///< Translation of each eye.
- float HmdSpaceToWorldScaleInMeters; ///< Ratio of viewer units to meter units.
-} ovrViewScaleDesc;
-
-
-//-----------------------------------------------------------------------------------
-// ***** Platform-independent Rendering Configuration
-
-/// The type of texture resource.
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureType_
-{
- ovrTexture_2D, ///< 2D textures.
- ovrTexture_2D_External, ///< External 2D texture. Not used on PC
- ovrTexture_Cube, ///< Cube maps. Not currently supported on PC.
- ovrTexture_Count,
- ovrTexture_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTextureType;
-
-/// The bindings required for texture swap chain.
-///
-/// All texture swap chains are automatically bindable as shader
-/// input resources since the Oculus runtime needs this to read them.
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureBindFlags_
-{
- ovrTextureBind_None,
- ovrTextureBind_DX_RenderTarget = 0x0001, ///< The application can write into the chain with pixel shader
- ovrTextureBind_DX_UnorderedAccess = 0x0002, ///< The application can write to the chain with compute shader
- ovrTextureBind_DX_DepthStencil = 0x0004, ///< The chain buffers can be bound as depth and/or stencil buffers
-
- ovrTextureBind_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTextureBindFlags;
-
-/// The format of a texture.
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureFormat_
-{
- OVR_FORMAT_UNKNOWN,
- OVR_FORMAT_B5G6R5_UNORM, ///< Not currently supported on PC. Would require a DirectX 11.1 device.
- OVR_FORMAT_B5G5R5A1_UNORM, ///< Not currently supported on PC. Would require a DirectX 11.1 device.
- OVR_FORMAT_B4G4R4A4_UNORM, ///< Not currently supported on PC. Would require a DirectX 11.1 device.
- OVR_FORMAT_R8G8B8A8_UNORM,
- OVR_FORMAT_R8G8B8A8_UNORM_SRGB,
- OVR_FORMAT_B8G8R8A8_UNORM,
- OVR_FORMAT_B8G8R8A8_UNORM_SRGB, ///< Not supported for OpenGL applications
- OVR_FORMAT_B8G8R8X8_UNORM, ///< Not supported for OpenGL applications
- OVR_FORMAT_B8G8R8X8_UNORM_SRGB, ///< Not supported for OpenGL applications
- OVR_FORMAT_R16G16B16A16_FLOAT,
- OVR_FORMAT_D16_UNORM,
- OVR_FORMAT_D24_UNORM_S8_UINT,
- OVR_FORMAT_D32_FLOAT,
- OVR_FORMAT_D32_FLOAT_S8X24_UINT,
-
- OVR_FORMAT_ENUMSIZE = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTextureFormat;
-
-/// Misc flags overriding particular
-/// behaviors of a texture swap chain
-///
-/// \see ovrTextureSwapChainDesc
-///
-typedef enum ovrTextureMiscFlags_
-{
- ovrTextureMisc_None,
-
- /// DX only: The underlying texture is created with a TYPELESS equivalent of the
- /// format specified in the texture desc. The SDK will still access the
- /// texture using the format specified in the texture desc, but the app can
- /// create views with different formats if this is specified.
- ovrTextureMisc_DX_Typeless = 0x0001,
-
- /// DX only: Allow generation of the mip chain on the GPU via the GenerateMips
- /// call. This flag requires that RenderTarget binding also be specified.
- ovrTextureMisc_AllowGenerateMips = 0x0002,
-
- /// Texture swap chain contains protected content, and requires
- /// HDCP connection in order to display to HMD. Also prevents
- /// mirroring or other redirection of any frame containing this contents
- ovrTextureMisc_ProtectedContent = 0x0004,
-
- ovrTextureMisc_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTextureFlags;
-
-/// Description used to create a texture swap chain.
-///
-/// \see ovr_CreateTextureSwapChainDX
-/// \see ovr_CreateTextureSwapChainGL
-///
-typedef struct ovrTextureSwapChainDesc_
-{
- ovrTextureType Type;
- ovrTextureFormat Format;
- int ArraySize; ///< Only supported with ovrTexture_2D. Not supported on PC at this time.
- int Width;
- int Height;
- int MipLevels;
- int SampleCount; ///< Current only supported on depth textures
- ovrBool StaticImage; ///< Not buffered in a chain. For images that don't change
- unsigned int MiscFlags; ///< ovrTextureFlags
- unsigned int BindFlags; ///< ovrTextureBindFlags. Not used for GL.
-} ovrTextureSwapChainDesc;
-
-/// Description used to create a mirror texture.
-///
-/// \see ovr_CreateMirrorTextureDX
-/// \see ovr_CreateMirrorTextureGL
-///
-typedef struct ovrMirrorTextureDesc_
-{
- ovrTextureFormat Format;
- int Width;
- int Height;
- unsigned int MiscFlags; ///< ovrTextureFlags
-} ovrMirrorTextureDesc;
-
-typedef struct ovrTextureSwapChainData* ovrTextureSwapChain;
-typedef struct ovrMirrorTextureData* ovrMirrorTexture;
-
-//-----------------------------------------------------------------------------------
-
-/// Describes button input types.
-/// Button inputs are combined; that is they will be reported as pressed if they are
-/// pressed on either one of the two devices.
-/// The ovrButton_Up/Down/Left/Right map to both XBox D-Pad and directional buttons.
-/// The ovrButton_Enter and ovrButton_Return map to Start and Back controller buttons, respectively.
-typedef enum ovrButton_
-{
- ovrButton_A = 0x00000001,
- ovrButton_B = 0x00000002,
- ovrButton_RThumb = 0x00000004,
- ovrButton_RShoulder = 0x00000008,
-
- // Bit mask of all buttons on the right Touch controller
- ovrButton_RMask = ovrButton_A | ovrButton_B | ovrButton_RThumb | ovrButton_RShoulder,
-
- ovrButton_X = 0x00000100,
- ovrButton_Y = 0x00000200,
- ovrButton_LThumb = 0x00000400,
- ovrButton_LShoulder = 0x00000800,
-
- // Bit mask of all buttons on the left Touch controller
- ovrButton_LMask = ovrButton_X | ovrButton_Y | ovrButton_LThumb | ovrButton_LShoulder,
-
- // Navigation through DPad.
- ovrButton_Up = 0x00010000,
- ovrButton_Down = 0x00020000,
- ovrButton_Left = 0x00040000,
- ovrButton_Right = 0x00080000,
- ovrButton_Enter = 0x00100000, // Start on XBox controller.
- ovrButton_Back = 0x00200000, // Back on Xbox controller.
- ovrButton_VolUp = 0x00400000, // only supported by Remote.
- ovrButton_VolDown = 0x00800000, // only supported by Remote.
- ovrButton_Home = 0x01000000,
- ovrButton_Private = ovrButton_VolUp | ovrButton_VolDown | ovrButton_Home,
-
-
- ovrButton_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrButton;
-
-/// Describes touch input types.
-/// These values map to capacitive touch values reported ovrInputState::Touch.
-/// Some of these values are mapped to button bits for consistency.
-typedef enum ovrTouch_
-{
- ovrTouch_A = ovrButton_A,
- ovrTouch_B = ovrButton_B,
- ovrTouch_RThumb = ovrButton_RThumb,
- ovrTouch_RIndexTrigger = 0x00000010,
-
- // Bit mask of all the button touches on the right controller
- ovrTouch_RButtonMask = ovrTouch_A | ovrTouch_B | ovrTouch_RThumb | ovrTouch_RIndexTrigger,
-
- ovrTouch_X = ovrButton_X,
- ovrTouch_Y = ovrButton_Y,
- ovrTouch_LThumb = ovrButton_LThumb,
- ovrTouch_LIndexTrigger = 0x00001000,
-
- // Bit mask of all the button touches on the left controller
- ovrTouch_LButtonMask = ovrTouch_X | ovrTouch_Y | ovrTouch_LThumb | ovrTouch_LIndexTrigger,
-
- // Finger pose state
- // Derived internally based on distance, proximity to sensors and filtering.
- ovrTouch_RIndexPointing = 0x00000020,
- ovrTouch_RThumbUp = 0x00000040,
-
- // Bit mask of all right controller poses
- ovrTouch_RPoseMask = ovrTouch_RIndexPointing | ovrTouch_RThumbUp,
-
- ovrTouch_LIndexPointing = 0x00002000,
- ovrTouch_LThumbUp = 0x00004000,
-
- // Bit mask of all left controller poses
- ovrTouch_LPoseMask = ovrTouch_LIndexPointing | ovrTouch_LThumbUp,
-
- ovrTouch_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrTouch;
-
-/// Specifies which controller is connected; multiple can be connected at once.
-typedef enum ovrControllerType_
-{
- ovrControllerType_None = 0x00,
- ovrControllerType_LTouch = 0x01,
- ovrControllerType_RTouch = 0x02,
- ovrControllerType_Touch = 0x03,
- ovrControllerType_Remote = 0x04,
- ovrControllerType_XBox = 0x10,
-
- ovrControllerType_Active = 0xff, ///< Operate on or query whichever controller is active.
-
- ovrControllerType_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrControllerType;
-
-
-/// Provides names for the left and right hand array indexes.
-///
-/// \see ovrInputState, ovrTrackingState
-///
-typedef enum ovrHandType_
-{
- ovrHand_Left = 0,
- ovrHand_Right = 1,
- ovrHand_Count = 2,
- ovrHand_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrHandType;
-
-
-
-/// ovrInputState describes the complete controller input state, including Oculus Touch,
-/// and XBox gamepad. If multiple inputs are connected and used at the same time,
-/// their inputs are combined.
-typedef struct ovrInputState_
-{
- // System type when the controller state was last updated.
- double TimeInSeconds;
-
- // Values for buttons described by ovrButton.
- unsigned int Buttons;
-
- // Touch values for buttons and sensors as described by ovrTouch.
- unsigned int Touches;
-
- // Left and right finger trigger values (ovrHand_Left and ovrHand_Right), in the range 0.0 to 1.0f.
- float IndexTrigger[ovrHand_Count];
-
- // Left and right hand trigger values (ovrHand_Left and ovrHand_Right), in the range 0.0 to 1.0f.
- float HandTrigger[ovrHand_Count];
-
- // Horizontal and vertical thumbstick axis values (ovrHand_Left and ovrHand_Right), in the range -1.0f to 1.0f.
- ovrVector2f Thumbstick[ovrHand_Count];
-
- // The type of the controller this state is for.
- ovrControllerType ControllerType;
-
-} ovrInputState;
-
-
-
-//-----------------------------------------------------------------------------------
-// ***** Initialize structures
-
-/// Initialization flags.
-///
-/// \see ovrInitParams, ovr_Initialize
-///
-typedef enum ovrInitFlags_
-{
- /// When a debug library is requested, a slower debugging version of the library will
- /// run which can be used to help solve problems in the library and debug application code.
- ovrInit_Debug = 0x00000001,
-
- /// When a version is requested, the LibOVR runtime respects the RequestedMinorVersion
- /// field and verifies that the RequestedMinorVersion is supported.
- ovrInit_RequestVersion = 0x00000004,
-
- // These bits are writable by user code.
- ovrinit_WritableBits = 0x00ffffff,
-
- ovrInit_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrInitFlags;
-
-
-/// Logging levels
-///
-/// \see ovrInitParams, ovrLogCallback
-///
-typedef enum ovrLogLevel_
-{
- ovrLogLevel_Debug = 0, ///< Debug-level log event.
- ovrLogLevel_Info = 1, ///< Info-level log event.
- ovrLogLevel_Error = 2, ///< Error-level log event.
-
- ovrLogLevel_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrLogLevel;
-
-
-/// Signature of the logging callback function pointer type.
-///
-/// \param[in] userData is an arbitrary value specified by the user of ovrInitParams.
-/// \param[in] level is one of the ovrLogLevel constants.
-/// \param[in] message is a UTF8-encoded null-terminated string.
-/// \see ovrInitParams, ovrLogLevel, ovr_Initialize
-///
-typedef void (OVR_CDECL* ovrLogCallback)(uintptr_t userData, int level, const char* message);
-
-
-/// Parameters for ovr_Initialize.
-///
-/// \see ovr_Initialize
-///
-typedef struct OVR_ALIGNAS(8) ovrInitParams_
-{
- /// Flags from ovrInitFlags to override default behavior.
- /// Use 0 for the defaults.
- uint32_t Flags;
-
- /// Requests a specific minimum minor version of the LibOVR runtime.
- /// Flags must include ovrInit_RequestVersion or this will be ignored
- /// and OVR_MINOR_VERSION will be used.
- uint32_t RequestedMinorVersion;
-
- /// User-supplied log callback function, which may be called at any time
- /// asynchronously from multiple threads until ovr_Shutdown completes.
- /// Use NULL to specify no log callback.
- ovrLogCallback LogCallback;
-
- /// User-supplied data which is passed as-is to LogCallback. Typically this
- /// is used to store an application-specific pointer which is read in the
- /// callback function.
- uintptr_t UserData;
-
- /// Relative number of milliseconds to wait for a connection to the server
- /// before failing. Use 0 for the default timeout.
- uint32_t ConnectionTimeoutMS;
-
- OVR_ON64(OVR_UNUSED_STRUCT_PAD(pad0, 4)) ///< \internal
-
-} ovrInitParams;
-
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-// -----------------------------------------------------------------------------------
-// ***** API Interfaces
-
-// Overview of the API
-//
-// Setup:
-// - ovr_Initialize().
-// - ovr_Create(&hmd, &graphicsId).
-// - Use hmd members and ovr_GetFovTextureSize() to determine graphics configuration
-// and ovr_GetRenderDesc() to get per-eye rendering parameters.
-// - Allocate texture swap chains with ovr_CreateTextureSwapChainDX() or
-// ovr_CreateTextureSwapChainGL(). Create any associated render target views or
-// frame buffer objects.
-//
-// Application Loop:
-// - Call ovr_GetPredictedDisplayTime() to get the current frame timing information.
-// - Call ovr_GetTrackingState() and ovr_CalcEyePoses() to obtain the predicted
-// rendering pose for each eye based on timing.
-// - Render the scene content into the current buffer of the texture swapchains
-// for each eye and layer you plan to update this frame. If you render into a
-// texture swap chain, you must call ovr_CommitTextureSwapChain() on it to commit
-// the changes before you reference the chain this frame (otherwise, your latest
-// changes won't be picked up).
-// - Call ovr_SubmitFrame() to render the distorted layers to and present them on the HMD.
-// If ovr_SubmitFrame returns ovrSuccess_NotVisible, there is no need to render the scene
-// for the next loop iteration. Instead, just call ovr_SubmitFrame again until it returns
-// ovrSuccess.
-//
-// Shutdown:
-// - ovr_Destroy().
-// - ovr_Shutdown().
-
-
-/// Initializes LibOVR
-///
-/// Initialize LibOVR for application usage. This includes finding and loading the LibOVRRT
-/// shared library. No LibOVR API functions, other than ovr_GetLastErrorInfo and ovr_Detect, can
-/// be called unless ovr_Initialize succeeds. A successful call to ovr_Initialize must be eventually
-/// followed by a call to ovr_Shutdown. ovr_Initialize calls are idempotent.
-/// Calling ovr_Initialize twice does not require two matching calls to ovr_Shutdown.
-/// If already initialized, the return value is ovr_Success.
-///
-/// LibOVRRT shared library search order:
-/// -# Current working directory (often the same as the application directory).
-/// -# Module directory (usually the same as the application directory,
-/// but not if the module is a separate shared library).
-/// -# Application directory
-/// -# Development directory (only if OVR_ENABLE_DEVELOPER_SEARCH is enabled,
-/// which is off by default).
-/// -# Standard OS shared library search location(s) (OS-specific).
-///
-/// \param params Specifies custom initialization options. May be NULL to indicate default options.
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information. Example failed results include:
-/// - ovrError_Initialize: Generic initialization error.
-/// - ovrError_LibLoad: Couldn't load LibOVRRT.
-/// - ovrError_LibVersion: LibOVRRT version incompatibility.
-/// - ovrError_ServiceConnection: Couldn't connect to the OVR Service.
-/// - ovrError_ServiceVersion: OVR Service version incompatibility.
-/// - ovrError_IncompatibleOS: The operating system version is incompatible.
-/// - ovrError_DisplayInit: Unable to initialize the HMD display.
-/// - ovrError_ServerStart: Unable to start the server. Is it already running?
-/// - ovrError_Reinitialization: Attempted to re-initialize with a different version.
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ovrResult result = ovr_Initialize(NULL);
-/// if(OVR_FAILURE(result)) {
-/// ovrErrorInfo errorInfo;
-/// ovr_GetLastErrorInfo(&errorInfo);
-/// DebugLog("ovr_Initialize failed: %s", errorInfo.ErrorString);
-/// return false;
-/// }
-/// [...]
-/// \endcode
-///
-/// \see ovr_Shutdown
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_Initialize(const ovrInitParams* params);
-
-
-/// Shuts down LibOVR
-///
-/// A successful call to ovr_Initialize must be eventually matched by a call to ovr_Shutdown.
-/// After calling ovr_Shutdown, no LibOVR functions can be called except ovr_GetLastErrorInfo
-/// or another ovr_Initialize. ovr_Shutdown invalidates all pointers, references, and created objects
-/// previously returned by LibOVR functions. The LibOVRRT shared library can be unloaded by
-/// ovr_Shutdown.
-///
-/// \see ovr_Initialize
-///
-OVR_PUBLIC_FUNCTION(void) ovr_Shutdown();
-
-/// Returns information about the most recent failed return value by the
-/// current thread for this library.
-///
-/// This function itself can never generate an error.
-/// The last error is never cleared by LibOVR, but will be overwritten by new errors.
-/// Do not use this call to determine if there was an error in the last API
-/// call as successful API calls don't clear the last ovrErrorInfo.
-/// To avoid any inconsistency, ovr_GetLastErrorInfo should be called immediately
-/// after an API function that returned a failed ovrResult, with no other API
-/// functions called in the interim.
-///
-/// \param[out] errorInfo The last ovrErrorInfo for the current thread.
-///
-/// \see ovrErrorInfo
-///
-OVR_PUBLIC_FUNCTION(void) ovr_GetLastErrorInfo(ovrErrorInfo* errorInfo);
-
-
-/// Returns the version string representing the LibOVRRT version.
-///
-/// The returned string pointer is valid until the next call to ovr_Shutdown.
-///
-/// Note that the returned version string doesn't necessarily match the current
-/// OVR_MAJOR_VERSION, etc., as the returned string refers to the LibOVRRT shared
-/// library version and not the locally compiled interface version.
-///
-/// The format of this string is subject to change in future versions and its contents
-/// should not be interpreted.
-///
-/// \return Returns a UTF8-encoded null-terminated version string.
-///
-OVR_PUBLIC_FUNCTION(const char*) ovr_GetVersionString();
-
-
-/// Writes a message string to the LibOVR tracing mechanism (if enabled).
-///
-/// This message will be passed back to the application via the ovrLogCallback if
-/// it was registered.
-///
-/// \param[in] level One of the ovrLogLevel constants.
-/// \param[in] message A UTF8-encoded null-terminated string.
-/// \return returns the strlen of the message or a negative value if the message is too large.
-///
-/// \see ovrLogLevel, ovrLogCallback
-///
-OVR_PUBLIC_FUNCTION(int) ovr_TraceMessage(int level, const char* message);
-
-
-//-------------------------------------------------------------------------------------
-/// @name HMD Management
-///
-/// Handles the enumeration, creation, destruction, and properties of an HMD (head-mounted display).
-///@{
-
-
-/// Returns information about the current HMD.
-///
-/// ovr_Initialize must have first been called in order for this to succeed, otherwise ovrHmdDesc::Type
-/// will be reported as ovrHmd_None.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create, else NULL in which
-/// case this function detects whether an HMD is present and returns its info if so.
-///
-/// \return Returns an ovrHmdDesc. If the hmd is NULL and ovrHmdDesc::Type is ovrHmd_None then
-/// no HMD is present.
-///
-OVR_PUBLIC_FUNCTION(ovrHmdDesc) ovr_GetHmdDesc(ovrSession session);
-
-
-/// Returns the number of sensors.
-///
-/// The number of sensors may change at any time, so this function should be called before use
-/// as opposed to once on startup.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \return Returns unsigned int count.
-///
-OVR_PUBLIC_FUNCTION(unsigned int) ovr_GetTrackerCount(ovrSession session);
-
-
-/// Returns a given sensor description.
-///
-/// It's possible that sensor desc [0] may indicate a unconnnected or non-pose tracked sensor, but
-/// sensor desc [1] may be connected.
-///
-/// ovr_Initialize must have first been called in order for this to succeed, otherwise the returned
-/// trackerDescArray will be zero-initialized. The data returned by this function can change at runtime.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \param[in] trackerDescIndex Specifies a sensor index. The valid indexes are in the range of 0 to
-/// the sensor count returned by ovr_GetTrackerCount.
-///
-/// \return Returns ovrTrackerDesc. An empty ovrTrackerDesc will be returned if trackerDescIndex is out of range.
-///
-/// \see ovrTrackerDesc, ovr_GetTrackerCount
-///
-OVR_PUBLIC_FUNCTION(ovrTrackerDesc) ovr_GetTrackerDesc(ovrSession session, unsigned int trackerDescIndex);
-
-
-/// Creates a handle to a VR session.
-///
-/// Upon success the returned ovrSession must be eventually freed with ovr_Destroy when it is no longer needed.
-/// A second call to ovr_Create will result in an error return value if the previous Hmd has not been destroyed.
-///
-/// \param[out] pSession Provides a pointer to an ovrSession which will be written to upon success.
-/// \param[out] luid Provides a system specific graphics adapter identifier that locates which
-/// graphics adapter has the HMD attached. This must match the adapter used by the application
-/// or no rendering output will be possible. This is important for stability on multi-adapter systems. An
-/// application that simply chooses the default adapter will not run reliably on multi-adapter systems.
-/// \return Returns an ovrResult indicating success or failure. Upon failure
-/// the returned pHmd will be NULL.
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ovrSession session;
-/// ovrGraphicsLuid luid;
-/// ovrResult result = ovr_Create(&session, &luid);
-/// if(OVR_FAILURE(result))
-/// ...
-/// \endcode
-///
-/// \see ovr_Destroy
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_Create(ovrSession* pSession, ovrGraphicsLuid* pLuid);
-
-
-/// Destroys the HMD.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \see ovr_Create
-///
-OVR_PUBLIC_FUNCTION(void) ovr_Destroy(ovrSession session);
-
-
-/// Specifies status information for the current session.
-///
-/// \see ovr_GetSessionStatus
-///
-typedef struct ovrSessionStatus_
-{
- ovrBool IsVisible; ///< True if the process has VR focus and thus is visible in the HMD.
- ovrBool HmdPresent; ///< True if an HMD is present.
- ovrBool HmdMounted; ///< True if the HMD is on the user's head.
- ovrBool DisplayLost; ///< True if the session is in a display-lost state. See ovr_SubmitFrame.
- ovrBool ShouldQuit; ///< True if the application should initiate shutdown.
- ovrBool ShouldRecenter; ///< True if UX has requested re-centering. Must call ovr_ClearShouldRecenterFlag or ovr_RecenterTrackingOrigin.
-}ovrSessionStatus;
-
-
-/// Returns status information for the application.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[out] sessionStatus Provides an ovrSessionStatus that is filled in.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of
-/// failure, use ovr_GetLastErrorInfo to get more information.
-// Return values include but aren't limited to:
-/// - ovrSuccess: Completed successfully.
-/// - ovrError_ServiceConnection: The service connection was lost and the application
-// must destroy the session.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetSessionStatus(ovrSession session, ovrSessionStatus* sessionStatus);
-
-
-//@}
-
-
-
-//-------------------------------------------------------------------------------------
-/// @name Tracking
-///
-/// Tracking functions handle the position, orientation, and movement of the HMD in space.
-///
-/// All tracking interface functions are thread-safe, allowing tracking state to be sampled
-/// from different threads.
-///
-///@{
-
-
-
-/// Sets the tracking origin type
-///
-/// When the tracking origin is changed, all of the calls that either provide
-/// or accept ovrPosef will use the new tracking origin provided.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] origin Specifies an ovrTrackingOrigin to be used for all ovrPosef
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// \see ovrTrackingOrigin, ovr_GetTrackingOriginType
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SetTrackingOriginType(ovrSession session, ovrTrackingOrigin origin);
-
-
-/// Gets the tracking origin state
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \return Returns the ovrTrackingOrigin that was either set by default, or previous set by the application.
-///
-/// \see ovrTrackingOrigin, ovr_SetTrackingOriginType
-OVR_PUBLIC_FUNCTION(ovrTrackingOrigin) ovr_GetTrackingOriginType(ovrSession session);
-
-
-/// Re-centers the sensor position and orientation.
-///
-/// This resets the (x,y,z) positional components and the yaw orientation component.
-/// The Roll and pitch orientation components are always determined by gravity and cannot
-/// be redefined. All future tracking will report values relative to this new reference position.
-/// If you are using ovrTrackerPoses then you will need to call ovr_GetTrackerPose after
-/// this, because the sensor position(s) will change as a result of this.
-///
-/// The headset cannot be facing vertically upward or downward but rather must be roughly
-/// level otherwise this function will fail with ovrError_InvalidHeadsetOrientation.
-///
-/// For more info, see the notes on each ovrTrackingOrigin enumeration to understand how
-/// recenter will vary slightly in its behavior based on the current ovrTrackingOrigin setting.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information. Return values include but aren't limited to:
-/// - ovrSuccess: Completed successfully.
-/// - ovrError_InvalidHeadsetOrientation: The headset was facing an invalid direction when
-/// attempting recentering, such as facing vertically.
-///
-/// \see ovrTrackingOrigin, ovr_GetTrackerPose
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_RecenterTrackingOrigin(ovrSession session);
-
-
-/// Clears the ShouldRecenter status bit in ovrSessionStatus.
-///
-/// Clears the ShouldRecenter status bit in ovrSessionStatus, allowing further recenter
-/// requests to be detected. Since this is automatically done by ovr_RecenterTrackingOrigin,
-/// this is only needs to be called when application is doing its own re-centering.
-OVR_PUBLIC_FUNCTION(void) ovr_ClearShouldRecenterFlag(ovrSession session);
-
-
-/// Returns tracking state reading based on the specified absolute system time.
-///
-/// Pass an absTime value of 0.0 to request the most recent sensor reading. In this case
-/// both PredictedPose and SamplePose will have the same value.
-///
-/// This may also be used for more refined timing of front buffer rendering logic, and so on.
-/// This may be called by multiple threads.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] absTime Specifies the absolute future time to predict the return
-/// ovrTrackingState value. Use 0 to request the most recent tracking state.
-/// \param[in] latencyMarker Specifies that this call is the point in time where
-/// the "App-to-Mid-Photon" latency timer starts from. If a given ovrLayer
-/// provides "SensorSampleTimestamp", that will override the value stored here.
-/// \return Returns the ovrTrackingState that is predicted for the given absTime.
-///
-/// \see ovrTrackingState, ovr_GetEyePoses, ovr_GetTimeInSeconds
-///
-OVR_PUBLIC_FUNCTION(ovrTrackingState) ovr_GetTrackingState(ovrSession session, double absTime, ovrBool latencyMarker);
-
-
-
-/// Returns the ovrTrackerPose for the given sensor.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] trackerPoseIndex Index of the sensor being requested.
-///
-/// \return Returns the requested ovrTrackerPose. An empty ovrTrackerPose will be returned if trackerPoseIndex is out of range.
-///
-/// \see ovr_GetTrackerCount
-///
-OVR_PUBLIC_FUNCTION(ovrTrackerPose) ovr_GetTrackerPose(ovrSession session, unsigned int trackerPoseIndex);
-
-
-
-/// Returns the most recent input state for controllers, without positional tracking info.
-///
-/// \param[out] inputState Input state that will be filled in.
-/// \param[in] ovrControllerType Specifies which controller the input will be returned for.
-/// \return Returns ovrSuccess if the new state was successfully obtained.
-///
-/// \see ovrControllerType
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetInputState(ovrSession session, ovrControllerType controllerType, ovrInputState* inputState);
-
-
-/// Returns controller types connected to the system OR'ed together.
-///
-/// \return A bitmask of ovrControllerTypes connected to the system.
-///
-/// \see ovrControllerType
-///
-OVR_PUBLIC_FUNCTION(unsigned int) ovr_GetConnectedControllerTypes(ovrSession session);
-
-
-/// Turns on vibration of the given controller.
-///
-/// To disable vibration, call ovr_SetControllerVibration with an amplitude of 0.
-/// Vibration automatically stops after a nominal amount of time, so if you want vibration
-/// to be continuous over multiple seconds then you need to call this function periodically.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] controllerType Specifies the controller to apply the vibration to.
-/// \param[in] frequency Specifies a vibration frequency in the range of 0.0 to 1.0.
-/// Currently the only valid values are 0.0, 0.5, and 1.0 and other values will
-/// be clamped to one of these.
-/// \param[in] amplitude Specifies a vibration amplitude in the range of 0.0 to 1.0.
-///
-/// \return Returns ovrSuccess upon success.
-///
-/// \see ovrControllerType
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SetControllerVibration(ovrSession session, ovrControllerType controllerType,
- float frequency, float amplitude);
-
-///@}
-
-
-//-------------------------------------------------------------------------------------
-// @name Layers
-//
-///@{
-
-
-/// Specifies the maximum number of layers supported by ovr_SubmitFrame.
-///
-/// /see ovr_SubmitFrame
-///
-enum {
- ovrMaxLayerCount = 16
-};
-
-/// Describes layer types that can be passed to ovr_SubmitFrame.
-/// Each layer type has an associated struct, such as ovrLayerEyeFov.
-///
-/// \see ovrLayerHeader
-///
-typedef enum ovrLayerType_
-{
- ovrLayerType_Disabled = 0, ///< Layer is disabled.
- ovrLayerType_EyeFov = 1, ///< Described by ovrLayerEyeFov.
- ovrLayerType_Quad = 3, ///< Described by ovrLayerQuad. Previously called ovrLayerType_QuadInWorld.
- /// enum 4 used to be ovrLayerType_QuadHeadLocked. Instead, use ovrLayerType_Quad with ovrLayerFlag_HeadLocked.
- ovrLayerType_EyeMatrix = 5, ///< Described by ovrLayerEyeMatrix.
- ovrLayerType_EnumSize = 0x7fffffff ///< Force type int32_t.
-} ovrLayerType;
-
-
-/// Identifies flags used by ovrLayerHeader and which are passed to ovr_SubmitFrame.
-///
-/// \see ovrLayerHeader
-///
-typedef enum ovrLayerFlags_
-{
- /// ovrLayerFlag_HighQuality enables 4x anisotropic sampling during the composition of the layer.
- /// The benefits are mostly visible at the periphery for high-frequency & high-contrast visuals.
- /// For best results consider combining this flag with an ovrTextureSwapChain that has mipmaps and
- /// instead of using arbitrary sized textures, prefer texture sizes that are powers-of-two.
- /// Actual rendered viewport and doesn't necessarily have to fill the whole texture.
- ovrLayerFlag_HighQuality = 0x01,
-
- /// ovrLayerFlag_TextureOriginAtBottomLeft: the opposite is TopLeft.
- /// Generally this is false for D3D, true for OpenGL.
- ovrLayerFlag_TextureOriginAtBottomLeft = 0x02,
-
- /// Mark this surface as "headlocked", which means it is specified
- /// relative to the HMD and moves with it, rather than being specified
- /// relative to sensor/torso space and remaining still while the head moves.
- /// What used to be ovrLayerType_QuadHeadLocked is now ovrLayerType_Quad plus this flag.
- /// However the flag can be applied to any layer type to achieve a similar effect.
- ovrLayerFlag_HeadLocked = 0x04
-
-} ovrLayerFlags;
-
-
-/// Defines properties shared by all ovrLayer structs, such as ovrLayerEyeFov.
-///
-/// ovrLayerHeader is used as a base member in these larger structs.
-/// This struct cannot be used by itself except for the case that Type is ovrLayerType_Disabled.
-///
-/// \see ovrLayerType, ovrLayerFlags
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerHeader_
-{
- ovrLayerType Type; ///< Described by ovrLayerType.
- unsigned Flags; ///< Described by ovrLayerFlags.
-} ovrLayerHeader;
-
-
-/// Describes a layer that specifies a monoscopic or stereoscopic view.
-/// This is the kind of layer that's typically used as layer 0 to ovr_SubmitFrame,
-/// as it is the kind of layer used to render a 3D stereoscopic view.
-///
-/// Three options exist with respect to mono/stereo texture usage:
-/// - ColorTexture[0] and ColorTexture[1] contain the left and right stereo renderings, respectively.
-/// Viewport[0] and Viewport[1] refer to ColorTexture[0] and ColorTexture[1], respectively.
-/// - ColorTexture[0] contains both the left and right renderings, ColorTexture[1] is NULL,
-/// and Viewport[0] and Viewport[1] refer to sub-rects with ColorTexture[0].
-/// - ColorTexture[0] contains a single monoscopic rendering, and Viewport[0] and
-/// Viewport[1] both refer to that rendering.
-///
-/// \see ovrTextureSwapChain, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerEyeFov_
-{
- /// Header.Type must be ovrLayerType_EyeFov.
- ovrLayerHeader Header;
-
- /// ovrTextureSwapChains for the left and right eye respectively.
- /// The second one of which can be NULL for cases described above.
- ovrTextureSwapChain ColorTexture[ovrEye_Count];
-
- /// Specifies the ColorTexture sub-rect UV coordinates.
- /// Both Viewport[0] and Viewport[1] must be valid.
- ovrRecti Viewport[ovrEye_Count];
-
- /// The viewport field of view.
- ovrFovPort Fov[ovrEye_Count];
-
- /// Specifies the position and orientation of each eye view, with the position specified in meters.
- /// RenderPose will typically be the value returned from ovr_CalcEyePoses,
- /// but can be different in special cases if a different head pose is used for rendering.
- ovrPosef RenderPose[ovrEye_Count];
-
- /// Specifies the timestamp when the source ovrPosef (used in calculating RenderPose)
- /// was sampled from the SDK. Typically retrieved by calling ovr_GetTimeInSeconds
- /// around the instant the application calls ovr_GetTrackingState
- /// The main purpose for this is to accurately track app tracking latency.
- double SensorSampleTime;
-
-} ovrLayerEyeFov;
-
-
-
-
-/// Describes a layer that specifies a monoscopic or stereoscopic view.
-/// This uses a direct 3x4 matrix to map from view space to the UV coordinates.
-/// It is essentially the same thing as ovrLayerEyeFov but using a much
-/// lower level. This is mainly to provide compatibility with specific apps.
-/// Unless the application really requires this flexibility, it is usually better
-/// to use ovrLayerEyeFov.
-///
-/// Three options exist with respect to mono/stereo texture usage:
-/// - ColorTexture[0] and ColorTexture[1] contain the left and right stereo renderings, respectively.
-/// Viewport[0] and Viewport[1] refer to ColorTexture[0] and ColorTexture[1], respectively.
-/// - ColorTexture[0] contains both the left and right renderings, ColorTexture[1] is NULL,
-/// and Viewport[0] and Viewport[1] refer to sub-rects with ColorTexture[0].
-/// - ColorTexture[0] contains a single monoscopic rendering, and Viewport[0] and
-/// Viewport[1] both refer to that rendering.
-///
-/// \see ovrTextureSwapChain, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerEyeMatrix_
-{
- /// Header.Type must be ovrLayerType_EyeMatrix.
- ovrLayerHeader Header;
-
- /// ovrTextureSwapChains for the left and right eye respectively.
- /// The second one of which can be NULL for cases described above.
- ovrTextureSwapChain ColorTexture[ovrEye_Count];
-
- /// Specifies the ColorTexture sub-rect UV coordinates.
- /// Both Viewport[0] and Viewport[1] must be valid.
- ovrRecti Viewport[ovrEye_Count];
-
- /// Specifies the position and orientation of each eye view, with the position specified in meters.
- /// RenderPose will typically be the value returned from ovr_CalcEyePoses,
- /// but can be different in special cases if a different head pose is used for rendering.
- ovrPosef RenderPose[ovrEye_Count];
-
- /// Specifies the mapping from a view-space vector
- /// to a UV coordinate on the textures given above.
- /// P = (x,y,z,1)*Matrix
- /// TexU = P.x/P.z
- /// TexV = P.y/P.z
- ovrMatrix4f Matrix[ovrEye_Count];
-
- /// Specifies the timestamp when the source ovrPosef (used in calculating RenderPose)
- /// was sampled from the SDK. Typically retrieved by calling ovr_GetTimeInSeconds
- /// around the instant the application calls ovr_GetTrackingState
- /// The main purpose for this is to accurately track app tracking latency.
- double SensorSampleTime;
-
-} ovrLayerEyeMatrix;
-
-
-
-
-
-/// Describes a layer of Quad type, which is a single quad in world or viewer space.
-/// It is used for ovrLayerType_Quad. This type of layer represents a single
-/// object placed in the world and not a stereo view of the world itself.
-///
-/// A typical use of ovrLayerType_Quad is to draw a television screen in a room
-/// that for some reason is more convenient to draw as a layer than as part of the main
-/// view in layer 0. For example, it could implement a 3D popup GUI that is drawn at a
-/// higher resolution than layer 0 to improve fidelity of the GUI.
-///
-/// Quad layers are visible from both sides; they are not back-face culled.
-///
-/// \see ovrTextureSwapChain, ovr_SubmitFrame
-///
-typedef struct OVR_ALIGNAS(OVR_PTR_SIZE) ovrLayerQuad_
-{
- /// Header.Type must be ovrLayerType_Quad.
- ovrLayerHeader Header;
-
- /// Contains a single image, never with any stereo view.
- ovrTextureSwapChain ColorTexture;
-
- /// Specifies the ColorTexture sub-rect UV coordinates.
- ovrRecti Viewport;
-
- /// Specifies the orientation and position of the center point of a Quad layer type.
- /// The supplied direction is the vector perpendicular to the quad.
- /// The position is in real-world meters (not the application's virtual world,
- /// the physical world the user is in) and is relative to the "zero" position
- /// set by ovr_RecenterTrackingOrigin unless the ovrLayerFlag_HeadLocked flag is used.
- ovrPosef QuadPoseCenter;
-
- /// Width and height (respectively) of the quad in meters.
- ovrVector2f QuadSize;
-
-} ovrLayerQuad;
-
-
-
-
-/// Union that combines ovrLayer types in a way that allows them
-/// to be used in a polymorphic way.
-typedef union ovrLayer_Union_
-{
- ovrLayerHeader Header;
- ovrLayerEyeFov EyeFov;
- ovrLayerQuad Quad;
-} ovrLayer_Union;
-
-
-//@}
-
-
-
-/// @name SDK Distortion Rendering
-///
-/// All of rendering functions including the configure and frame functions
-/// are not thread safe. It is OK to use ConfigureRendering on one thread and handle
-/// frames on another thread, but explicit synchronization must be done since
-/// functions that depend on configured state are not reentrant.
-///
-/// These functions support rendering of distortion by the SDK.
-///
-//@{
-
-/// TextureSwapChain creation is rendering API-specific.
-/// ovr_CreateTextureSwapChainDX and ovr_CreateTextureSwapChainGL can be found in the
-/// rendering API-specific headers, such as OVR_CAPI_D3D.h and OVR_CAPI_GL.h
-
-/// Gets the number of buffers in an ovrTextureSwapChain.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies the ovrTextureSwapChain for which the length should be retrieved.
-/// \param[out] out_Length Returns the number of buffers in the specified chain.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainLength(ovrSession session, ovrTextureSwapChain chain, int* out_Length);
-
-/// Gets the current index in an ovrTextureSwapChain.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies the ovrTextureSwapChain for which the index should be retrieved.
-/// \param[out] out_Index Returns the current (free) index in specified chain.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainCurrentIndex(ovrSession session, ovrTextureSwapChain chain, int* out_Index);
-
-/// Gets the description of the buffers in an ovrTextureSwapChain
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies the ovrTextureSwapChain for which the description should be retrieved.
-/// \param[out] out_Desc Returns the description of the specified chain.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainDesc(ovrSession session, ovrTextureSwapChain chain, ovrTextureSwapChainDesc* out_Desc);
-
-/// Commits any pending changes to an ovrTextureSwapChain, and advances its current index
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies the ovrTextureSwapChain to commit.
-///
-/// \note When Commit is called, the texture at the current index is considered ready for use by the
-/// runtime, and further writes to it should be avoided. The swap chain's current index is advanced,
-/// providing there's room in the chain. The next time the SDK dereferences this texture swap chain,
-/// it will synchronize with the app's graphics context and pick up the submitted index, opening up
-/// room in the swap chain for further commits.
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error.
-/// Failures include but aren't limited to:
-/// - ovrError_TextureSwapChainFull: ovr_CommitTextureSwapChain was called too many times on a texture swapchain without calling submit to use the chain.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CommitTextureSwapChain(ovrSession session, ovrTextureSwapChain chain);
-
-/// Destroys an ovrTextureSwapChain and frees all the resources associated with it.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies the ovrTextureSwapChain to destroy. If it is NULL then this function has no effect.
-///
-/// \see ovr_CreateTextureSwapChainDX, ovr_CreateTextureSwapChainGL
-///
-OVR_PUBLIC_FUNCTION(void) ovr_DestroyTextureSwapChain(ovrSession session, ovrTextureSwapChain chain);
-
-
-/// MirrorTexture creation is rendering API-specific.
-/// ovr_CreateMirrorTextureDX and ovr_CreateMirrorTextureGL can be found in the
-/// rendering API-specific headers, such as OVR_CAPI_D3D.h and OVR_CAPI_GL.h
-
-/// Destroys a mirror texture previously created by one of the mirror texture creation functions.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] mirrorTexture Specifies the ovrTexture to destroy. If it is NULL then this function has no effect.
-///
-/// \see ovr_CreateMirrorTextureDX, ovr_CreateMirrorTextureGL
-///
-OVR_PUBLIC_FUNCTION(void) ovr_DestroyMirrorTexture(ovrSession session, ovrMirrorTexture mirrorTexture);
-
-
-/// Calculates the recommended viewport size for rendering a given eye within the HMD
-/// with a given FOV cone.
-///
-/// Higher FOV will generally require larger textures to maintain quality.
-/// Apps packing multiple eye views together on the same texture should ensure there are
-/// at least 8 pixels of padding between them to prevent texture filtering and chromatic
-/// aberration causing images to leak between the two eye views.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] eye Specifies which eye (left or right) to calculate for.
-/// \param[in] fov Specifies the ovrFovPort to use.
-/// \param[in] pixelsPerDisplayPixel Specifies the ratio of the number of render target pixels
-/// to display pixels at the center of distortion. 1.0 is the default value. Lower
-/// values can improve performance, higher values give improved quality.
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ovrHmdDesc hmdDesc = ovr_GetHmdDesc(session);
-/// ovrSizei eyeSizeLeft = ovr_GetFovTextureSize(session, ovrEye_Left, hmdDesc.DefaultEyeFov[ovrEye_Left], 1.0f);
-/// ovrSizei eyeSizeRight = ovr_GetFovTextureSize(session, ovrEye_Right, hmdDesc.DefaultEyeFov[ovrEye_Right], 1.0f);
-/// \endcode
-///
-/// \return Returns the texture width and height size.
-///
-OVR_PUBLIC_FUNCTION(ovrSizei) ovr_GetFovTextureSize(ovrSession session, ovrEyeType eye, ovrFovPort fov,
- float pixelsPerDisplayPixel);
-
-/// Computes the distortion viewport, view adjust, and other rendering parameters for
-/// the specified eye.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] eyeType Specifies which eye (left or right) for which to perform calculations.
-/// \param[in] fov Specifies the ovrFovPort to use.
-///
-/// \return Returns the computed ovrEyeRenderDesc for the given eyeType and field of view.
-///
-/// \see ovrEyeRenderDesc
-///
-OVR_PUBLIC_FUNCTION(ovrEyeRenderDesc) ovr_GetRenderDesc(ovrSession session,
- ovrEyeType eyeType, ovrFovPort fov);
-
-/// Submits layers for distortion and display.
-///
-/// ovr_SubmitFrame triggers distortion and processing which might happen asynchronously.
-/// The function will return when there is room in the submission queue and surfaces
-/// are available. Distortion might or might not have completed.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-///
-/// \param[in] frameIndex Specifies the targeted application frame index, or 0 to refer to one frame
-/// after the last time ovr_SubmitFrame was called.
-///
-/// \param[in] viewScaleDesc Provides additional information needed only if layerPtrList contains
-/// an ovrLayerType_Quad. If NULL, a default version is used based on the current configuration and a 1.0 world scale.
-///
-/// \param[in] layerPtrList Specifies a list of ovrLayer pointers, which can include NULL entries to
-/// indicate that any previously shown layer at that index is to not be displayed.
-/// Each layer header must be a part of a layer structure such as ovrLayerEyeFov or ovrLayerQuad,
-/// with Header.Type identifying its type. A NULL layerPtrList entry in the array indicates the
-// absence of the given layer.
-///
-/// \param[in] layerCount Indicates the number of valid elements in layerPtrList. The maximum
-/// supported layerCount is not currently specified, but may be specified in a future version.
-///
-/// - Layers are drawn in the order they are specified in the array, regardless of the layer type.
-///
-/// - Layers are not remembered between successive calls to ovr_SubmitFrame. A layer must be
-/// specified in every call to ovr_SubmitFrame or it won't be displayed.
-///
-/// - If a layerPtrList entry that was specified in a previous call to ovr_SubmitFrame is
-/// passed as NULL or is of type ovrLayerType_Disabled, that layer is no longer displayed.
-///
-/// - A layerPtrList entry can be of any layer type and multiple entries of the same layer type
-/// are allowed. No layerPtrList entry may be duplicated (i.e. the same pointer as an earlier entry).
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ovrLayerEyeFov layer0;
-/// ovrLayerQuad layer1;
-/// ...
-/// ovrLayerHeader* layers[2] = { &layer0.Header, &layer1.Header };
-/// ovrResult result = ovr_SubmitFrame(hmd, frameIndex, nullptr, layers, 2);
-/// \endcode
-///
-/// \return Returns an ovrResult for which OVR_SUCCESS(result) is false upon error and true
-/// upon success. Return values include but aren't limited to:
-/// - ovrSuccess: rendering completed successfully.
-/// - ovrSuccess_NotVisible: rendering completed successfully but was not displayed on the HMD,
-/// usually because another application currently has ownership of the HMD. Applications receiving
-/// this result should stop rendering new content, but continue to call ovr_SubmitFrame periodically
-/// until it returns a value other than ovrSuccess_NotVisible.
-/// - ovrError_DisplayLost: The session has become invalid (such as due to a device removal)
-/// and the shared resources need to be released (ovr_DestroyTextureSwapChain), the session needs to
-/// destroyed (ovr_Destroy) and recreated (ovr_Create), and new resources need to be created
-/// (ovr_CreateTextureSwapChainXXX). The application's existing private graphics resources do not
-/// need to be recreated unless the new ovr_Create call returns a different GraphicsLuid.
-/// - ovrError_TextureSwapChainInvalid: The ovrTextureSwapChain is in an incomplete or inconsistent state.
-/// Ensure ovr_CommitTextureSwapChain was called at least once first.
-///
-/// \see ovr_GetPredictedDisplayTime, ovrViewScaleDesc, ovrLayerHeader
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_SubmitFrame(ovrSession session, long long frameIndex,
- const ovrViewScaleDesc* viewScaleDesc,
- ovrLayerHeader const * const * layerPtrList, unsigned int layerCount);
-///@}
-
-
-
-//-------------------------------------------------------------------------------------
-/// @name Frame Timing
-///
-//@{
-
-
-/// Gets the time of the specified frame midpoint.
-///
-/// Predicts the time at which the given frame will be displayed. The predicted time
-/// is the middle of the time period during which the corresponding eye images will
-/// be displayed.
-///
-/// The application should increment frameIndex for each successively targeted frame,
-/// and pass that index to any relevent OVR functions that need to apply to the frame
-/// identified by that index.
-///
-/// This function is thread-safe and allows for multiple application threads to target
-/// their processing to the same displayed frame.
-///
-/// In the even that prediction fails due to various reasons (e.g. the display being off
-/// or app has yet to present any frames), the return value will be current CPU time.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] frameIndex Identifies the frame the caller wishes to target.
-/// A value of zero returns the next frame index.
-/// \return Returns the absolute frame midpoint time for the given frameIndex.
-/// \see ovr_GetTimeInSeconds
-///
-OVR_PUBLIC_FUNCTION(double) ovr_GetPredictedDisplayTime(ovrSession session, long long frameIndex);
-
-
-/// Returns global, absolute high-resolution time in seconds.
-///
-/// The time frame of reference for this function is not specified and should not be
-/// depended upon.
-///
-/// \return Returns seconds as a floating point value.
-/// \see ovrPoseStatef, ovrFrameTiming
-///
-OVR_PUBLIC_FUNCTION(double) ovr_GetTimeInSeconds();
-
-
-/// Performance HUD enables the HMD user to see information critical to
-/// the real-time operation of the VR application such as latency timing,
-/// and CPU & GPU performance metrics
-///
-/// App can toggle performance HUD modes as such:
-/// \code{.cpp}
-/// ovrPerfHudMode PerfHudMode = ovrPerfHud_LatencyTiming;
-/// ovr_SetInt(Hmd, OVR_PERF_HUD_MODE, (int)PerfHudMode);
-/// \endcode
-///
-typedef enum ovrPerfHudMode_
-{
- ovrPerfHud_Off = 0, ///< Turns off the performance HUD
- ovrPerfHud_PerfSummary = 1, ///< Shows performance summary and headroom
- ovrPerfHud_LatencyTiming = 2, ///< Shows latency related timing info
- ovrPerfHud_AppRenderTiming = 3, ///< Shows render timing info for application
- ovrPerfHud_CompRenderTiming = 4, ///< Shows render timing info for OVR compositor
- ovrPerfHud_VersionInfo = 5, ///< Shows SDK & HMD version Info
- ovrPerfHud_Count = 6, ///< \internal Count of enumerated elements.
- ovrPerfHud_EnumSize = 0x7fffffff ///< \internal Force type int32_t.
-} ovrPerfHudMode;
-
-/// Layer HUD enables the HMD user to see information about a layer
-///
-/// App can toggle layer HUD modes as such:
-/// \code{.cpp}
-/// ovrLayerHudMode LayerHudMode = ovrLayerHud_Info;
-/// ovr_SetInt(Hmd, OVR_LAYER_HUD_MODE, (int)LayerHudMode);
-/// \endcode
-///
-typedef enum ovrLayerHudMode_
-{
- ovrLayerHud_Off = 0, ///< Turns off the layer HUD
- ovrLayerHud_Info = 1, ///< Shows info about a specific layer
- ovrLayerHud_EnumSize = 0x7fffffff
-} ovrLayerHudMode;
-
-///@}
-
-/// Debug HUD is provided to help developers gauge and debug the fidelity of their app's
-/// stereo rendering characteristics. Using the provided quad and crosshair guides,
-/// the developer can verify various aspects such as VR tracking units (e.g. meters),
-/// stereo camera-parallax properties (e.g. making sure objects at infinity are rendered
-/// with the proper separation), measuring VR geometry sizes and distances and more.
-///
-/// App can toggle the debug HUD modes as such:
-/// \code{.cpp}
-/// ovrDebugHudStereoMode DebugHudMode = ovrDebugHudStereo_QuadWithCrosshair;
-/// ovr_SetInt(Hmd, OVR_DEBUG_HUD_STEREO_MODE, (int)DebugHudMode);
-/// \endcode
-///
-/// The app can modify the visual properties of the stereo guide (i.e. quad, crosshair)
-/// using the ovr_SetFloatArray function. For a list of tweakable properties,
-/// see the OVR_DEBUG_HUD_STEREO_GUIDE_* keys in the OVR_CAPI_Keys.h header file.
-typedef enum ovrDebugHudStereoMode_
-{
- ovrDebugHudStereo_Off = 0, ///< Turns off the Stereo Debug HUD
- ovrDebugHudStereo_Quad = 1, ///< Renders Quad in world for Stereo Debugging
- ovrDebugHudStereo_QuadWithCrosshair = 2, ///< Renders Quad+crosshair in world for Stereo Debugging
- ovrDebugHudStereo_CrosshairAtInfinity = 3, ///< Renders screen-space crosshair at infinity for Stereo Debugging
- ovrDebugHudStereo_Count, ///< \internal Count of enumerated elements
-
- ovrDebugHudStereo_EnumSize = 0x7fffffff ///< \internal Force type int32_t
-} ovrDebugHudStereoMode;
-
-
-
-
-// -----------------------------------------------------------------------------------
-/// @name Property Access
-///
-/// These functions read and write OVR properties. Supported properties
-/// are defined in OVR_CAPI_Keys.h
-///
-//@{
-
-/// Reads a boolean property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid for only the call.
-/// \param[in] defaultVal specifes the value to return if the property couldn't be read.
-/// \return Returns the property interpreted as a boolean value. Returns defaultVal if
-/// the property doesn't exist.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_GetBool(ovrSession session, const char* propertyName, ovrBool defaultVal);
-
-/// Writes or creates a boolean property.
-/// If the property wasn't previously a boolean property, it is changed to a boolean property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The value to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-/// name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetBool(ovrSession session, const char* propertyName, ovrBool value);
-
-
-/// Reads an integer property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] defaultVal Specifes the value to return if the property couldn't be read.
-/// \return Returns the property interpreted as an integer value. Returns defaultVal if
-/// the property doesn't exist.
-OVR_PUBLIC_FUNCTION(int) ovr_GetInt(ovrSession session, const char* propertyName, int defaultVal);
-
-/// Writes or creates an integer property.
-///
-/// If the property wasn't previously a boolean property, it is changed to an integer property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The value to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-/// name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetInt(ovrSession session, const char* propertyName, int value);
-
-
-/// Reads a float property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] defaultVal specifes the value to return if the property couldn't be read.
-/// \return Returns the property interpreted as an float value. Returns defaultVal if
-/// the property doesn't exist.
-OVR_PUBLIC_FUNCTION(float) ovr_GetFloat(ovrSession session, const char* propertyName, float defaultVal);
-
-/// Writes or creates a float property.
-/// If the property wasn't previously a float property, it's changed to a float property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The value to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-/// name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetFloat(ovrSession session, const char* propertyName, float value);
-
-
-/// Reads a float array property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] values An array of float to write to.
-/// \param[in] valuesCapacity Specifies the maximum number of elements to write to the values array.
-/// \return Returns the number of elements read, or 0 if property doesn't exist or is empty.
-OVR_PUBLIC_FUNCTION(unsigned int) ovr_GetFloatArray(ovrSession session, const char* propertyName,
- float values[], unsigned int valuesCapacity);
-
-/// Writes or creates a float array property.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] values An array of float to write from.
-/// \param[in] valuesSize Specifies the number of elements to write.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-/// name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetFloatArray(ovrSession session, const char* propertyName,
- const float values[], unsigned int valuesSize);
-
-
-/// Reads a string property.
-/// Strings are UTF8-encoded and null-terminated.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] defaultVal Specifes the value to return if the property couldn't be read.
-/// \return Returns the string property if it exists. Otherwise returns defaultVal, which can be specified as NULL.
-/// The return memory is guaranteed to be valid until next call to ovr_GetString or
-/// until the HMD is destroyed, whichever occurs first.
-OVR_PUBLIC_FUNCTION(const char*) ovr_GetString(ovrSession session, const char* propertyName,
- const char* defaultVal);
-
-/// Writes or creates a string property.
-/// Strings are UTF8-encoded and null-terminated.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] propertyName The name of the property, which needs to be valid only for the call.
-/// \param[in] value The string property, which only needs to be valid for the duration of the call.
-/// \return Returns true if successful, otherwise false. A false result should only occur if the property
-/// name is empty or if the property is read-only.
-OVR_PUBLIC_FUNCTION(ovrBool) ovr_SetString(ovrSession session, const char* propertyName,
- const char* value);
-
-///@}
-
-
-
-#ifdef __cplusplus
-} // extern "C"
-#endif
-
-
-#if defined(_MSC_VER)
- #pragma warning(pop)
-#endif
-
-/// @cond DoxygenIgnore
-//-----------------------------------------------------------------------------
-// ***** Compiler packing validation
-//
-// These checks ensure that the compiler settings being used will be compatible
-// with with pre-built dynamic library provided with the runtime.
-
-OVR_STATIC_ASSERT(sizeof(ovrBool) == 1, "ovrBool size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrVector2i) == 4 * 2, "ovrVector2i size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrSizei) == 4 * 2, "ovrSizei size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrRecti) == sizeof(ovrVector2i) + sizeof(ovrSizei), "ovrRecti size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrQuatf) == 4 * 4, "ovrQuatf size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrVector2f) == 4 * 2, "ovrVector2f size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrVector3f) == 4 * 3, "ovrVector3f size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrMatrix4f) == 4 * 16, "ovrMatrix4f size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrPosef) == (7 * 4), "ovrPosef size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrPoseStatef) == (22 * 4), "ovrPoseStatef size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrFovPort) == (4 * 4), "ovrFovPort size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrHmdCaps) == 4, "ovrHmdCaps size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTrackingCaps) == 4, "ovrTrackingCaps size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrEyeType) == 4, "ovrEyeType size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrHmdType) == 4, "ovrHmdType size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrTrackerDesc) == 4 + 4 + 4 + 4, "ovrTrackerDesc size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTrackerPose) == 4 + 4 + sizeof(ovrPosef) + sizeof(ovrPosef), "ovrTrackerPose size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTrackingState) == sizeof(ovrPoseStatef) + 4 + 4 + (sizeof(ovrPoseStatef) * 2) + (sizeof(unsigned int) * 2) + sizeof(ovrPosef) + 4, "ovrTrackingState size mismatch");
-
-
-//OVR_STATIC_ASSERT(sizeof(ovrTextureHeader) == sizeof(ovrRenderAPIType) + sizeof(ovrSizei),
-// "ovrTextureHeader size mismatch");
-//OVR_STATIC_ASSERT(sizeof(ovrTexture) == sizeof(ovrTextureHeader) OVR_ON64(+4) + sizeof(uintptr_t) * 8,
-// "ovrTexture size mismatch");
-//
-OVR_STATIC_ASSERT(sizeof(ovrStatusBits) == 4, "ovrStatusBits size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrSessionStatus) == 6, "ovrSessionStatus size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrEyeRenderDesc) == sizeof(ovrEyeType) + sizeof(ovrFovPort) + sizeof(ovrRecti) +
- sizeof(ovrVector2f) + sizeof(ovrVector3f),
- "ovrEyeRenderDesc size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrTimewarpProjectionDesc) == 4 * 3, "ovrTimewarpProjectionDesc size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrInitFlags) == 4, "ovrInitFlags size mismatch");
-OVR_STATIC_ASSERT(sizeof(ovrLogLevel) == 4, "ovrLogLevel size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrInitParams) == 4 + 4 + sizeof(ovrLogCallback) + sizeof(uintptr_t) + 4 + 4,
- "ovrInitParams size mismatch");
-
-OVR_STATIC_ASSERT(sizeof(ovrHmdDesc) ==
- + sizeof(ovrHmdType) // Type
- OVR_ON64(+ 4) // pad0
- + 64 // ProductName
- + 64 // Manufacturer
- + 2 // VendorId
- + 2 // ProductId
- + 24 // SerialNumber
- + 2 // FirmwareMajor
- + 2 // FirmwareMinor
- + 4 * 4 // AvailableHmdCaps - DefaultTrackingCaps
- + sizeof(ovrFovPort) * 2 // DefaultEyeFov
- + sizeof(ovrFovPort) * 2 // MaxEyeFov
- + sizeof(ovrSizei) // Resolution
- + 4 // DisplayRefreshRate
- OVR_ON64(+ 4) // pad1
- , "ovrHmdDesc size mismatch");
-
-
-// -----------------------------------------------------------------------------------
-// ***** Backward compatibility #includes
-//
-// This is at the bottom of this file because the following is dependent on the
-// declarations above.
-
-#if !defined(OVR_CAPI_NO_UTILS)
- #include "Extras/OVR_CAPI_Util.h"
-#endif
-
-/// @endcond
-
-#endif // OVR_CAPI_h
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Audio.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Audio.h
deleted file mode 100644
index c5344813..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Audio.h
+++ /dev/null
@@ -1,76 +0,0 @@
-/********************************************************************************//**
-\file OVR_CAPI_Audio.h
-\brief CAPI audio functions.
-\copyright Copyright 2015 Oculus VR, LLC. All Rights reserved.
-************************************************************************************/
-
-
-#ifndef OVR_CAPI_Audio_h
-#define OVR_CAPI_Audio_h
-
-#ifdef _WIN32
-#include <windows.h>
-#include "OVR_CAPI.h"
-#define OVR_AUDIO_MAX_DEVICE_STR_SIZE 128
-
-/// Gets the ID of the preferred VR audio output device.
-///
-/// \param[out] deviceOutId The ID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be WAVE_MAPPER.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutWaveId(UINT* deviceOutId);
-
-/// Gets the ID of the preferred VR audio input device.
-///
-/// \param[out] deviceInId The ID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be WAVE_MAPPER.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInWaveId(UINT* deviceInId);
-
-
-/// Gets the GUID of the preferred VR audio device as a string.
-///
-/// \param[out] deviceOutStrBuffer A buffer where the GUID string for the device will copied to.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutGuidStr(WCHAR deviceOutStrBuffer[OVR_AUDIO_MAX_DEVICE_STR_SIZE]);
-
-
-/// Gets the GUID of the preferred VR audio device.
-///
-/// \param[out] deviceOutGuid The GUID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be NULL.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceOutGuid(GUID* deviceOutGuid);
-
-
-/// Gets the GUID of the preferred VR microphone device as a string.
-///
-/// \param[out] deviceInStrBuffer A buffer where the GUID string for the device will copied to.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInGuidStr(WCHAR deviceInStrBuffer[OVR_AUDIO_MAX_DEVICE_STR_SIZE]);
-
-
-/// Gets the GUID of the preferred VR microphone device.
-///
-/// \param[out] deviceInGuid The GUID of the user's preferred VR audio device to use, which will be valid upon a successful return value, else it will be NULL.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetAudioDeviceInGuid(GUID* deviceInGuid);
-
-#endif //OVR_OS_MS
-
-#endif // OVR_CAPI_Audio_h
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_D3D.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_D3D.h
deleted file mode 100644
index 50806bca..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_D3D.h
+++ /dev/null
@@ -1,155 +0,0 @@
-/********************************************************************************//**
-\file OVR_CAPI_D3D.h
-\brief D3D specific structures used by the CAPI interface.
-\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_D3D_h
-#define OVR_CAPI_D3D_h
-
-#include "OVR_CAPI.h"
-#include "OVR_Version.h"
-
-
-#if defined (_WIN32)
-#include <Unknwn.h>
-
-//-----------------------------------------------------------------------------------
-// ***** Direct3D Specific
-
-/// Create Texture Swap Chain suitable for use with Direct3D 11 and 12.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] d3dPtr Specifies the application's D3D11Device to create resources with or the D3D12CommandQueue
-/// which must be the same one the application renders to the eye textures with.
-/// \param[in] desc Specifies requested texture properties. See notes for more info about texture format.
-/// \param[in] bindFlags Specifies what ovrTextureBindFlags the application requires for this texture chain.
-/// \param[out] out_TextureSwapChain Returns the created ovrTextureSwapChain, which will be valid upon a successful return value, else it will be NULL.
-/// This texture chain must be eventually destroyed via ovr_DestroyTextureSwapChain before destroying the HMD with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// \note The texture format provided in \a desc should be thought of as the format the distortion-compositor will use for the
-/// ShaderResourceView when reading the contents of the texture. To that end, it is highly recommended that the application
-/// requests texture swapchain formats that are in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the compositor
-/// does sRGB-correct rendering. As such, the compositor relies on the GPU's hardware sampler to do the sRGB-to-linear
-/// conversion. If the application still prefers to render to a linear format (e.g. OVR_FORMAT_R8G8B8A8_UNORM) while handling the
-/// linear-to-gamma conversion via HLSL code, then the application must still request the corresponding sRGB format and also use
-/// the \a ovrTextureMisc_DX_Typeless flag in the ovrTextureSwapChainDesc's Flag field. This will allow the application to create
-/// a RenderTargetView that is the desired linear format while the compositor continues to treat it as sRGB. Failure to do so
-/// will cause the compositor to apply unexpected gamma conversions leading to gamma-curve artifacts. The \a ovrTextureMisc_DX_Typeless
-/// flag for depth buffer formats (e.g. OVR_FORMAT_D32_FLOAT) is ignored as they are always converted to be typeless.
-///
-/// \see ovr_GetTextureSwapChainLength
-/// \see ovr_GetTextureSwapChainCurrentIndex
-/// \see ovr_GetTextureSwapChainDesc
-/// \see ovr_GetTextureSwapChainBufferDX
-/// \see ovr_DestroyTextureSwapChain
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateTextureSwapChainDX(ovrSession session,
- IUnknown* d3dPtr,
- const ovrTextureSwapChainDesc* desc,
- ovrTextureSwapChain* out_TextureSwapChain);
-
-
-/// Get a specific buffer within the chain as any compatible COM interface (similar to QueryInterface)
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies an ovrTextureSwapChain previously returned by ovr_CreateTextureSwapChainDX
-/// \param[in] index Specifies the index within the chain to retrieve. Must be between 0 and length (see ovr_GetTextureSwapChainLength),
-/// or may pass -1 to get the buffer at the CurrentIndex location. (Saving a call to GetTextureSwapChainCurrentIndex)
-/// \param[in] iid Specifies the interface ID of the interface pointer to query the buffer for.
-/// \param[out] out_Buffer Returns the COM interface pointer retrieved.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ovr_GetTextureSwapChainBufferDX(session, chain, 0, IID_ID3D11Texture2D, &d3d11Texture);
-/// ovr_GetTextureSwapChainBufferDX(session, chain, 1, IID_PPV_ARGS(&dxgiResource));
-/// \endcode
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainBufferDX(ovrSession session,
- ovrTextureSwapChain chain,
- int index,
- IID iid,
- void** out_Buffer);
-
-
-/// Create Mirror Texture which is auto-refreshed to mirror Rift contents produced by this application.
-///
-/// A second call to ovr_CreateMirrorTextureDX for a given ovrSession before destroying the first one
-/// is not supported and will result in an error return.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] d3dPtr Specifies the application's D3D11Device to create resources with or the D3D12CommandQueue
-/// which must be the same one the application renders to the textures with.
-/// \param[in] desc Specifies requested texture properties. See notes for more info about texture format.
-/// \param[out] out_MirrorTexture Returns the created ovrMirrorTexture, which will be valid upon a successful return value, else it will be NULL.
-/// This texture must be eventually destroyed via ovr_DestroyMirrorTexture before destroying the HMD with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// \note The texture format provided in \a desc should be thought of as the format the compositor will use for the RenderTargetView when
-/// writing into mirror texture. To that end, it is highly recommended that the application requests a mirror texture format that is
-/// in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the compositor does sRGB-correct rendering. If however the application wants
-/// to still read the mirror texture as a linear format (e.g. OVR_FORMAT_R8G8B8A8_UNORM) and handle the sRGB-to-linear conversion in
-/// HLSL code, then it is recommended the application still requests an sRGB format and also use the \a ovrTextureMisc_DX_Typeless flag in the
-/// ovrMirrorTextureDesc's Flags field. This will allow the application to bind a ShaderResourceView that is a linear format while the
-/// compositor continues to treat is as sRGB. Failure to do so will cause the compositor to apply unexpected gamma conversions leading to
-/// gamma-curve artifacts.
-///
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ovrMirrorTexture mirrorTexture = nullptr;
-/// ovrMirrorTextureDesc mirrorDesc = {};
-/// mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
-/// mirrorDesc.Width = mirrorWindowWidth;
-/// mirrorDesc.Height = mirrorWindowHeight;
-/// ovrResult result = ovr_CreateMirrorTextureDX(session, d3d11Device, &mirrorDesc, &mirrorTexture);
-/// [...]
-/// // Destroy the texture when done with it.
-/// ovr_DestroyMirrorTexture(session, mirrorTexture);
-/// mirrorTexture = nullptr;
-/// \endcode
-///
-/// \see ovr_GetMirrorTextureBufferDX
-/// \see ovr_DestroyMirrorTexture
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateMirrorTextureDX(ovrSession session,
- IUnknown* d3dPtr,
- const ovrMirrorTextureDesc* desc,
- ovrMirrorTexture* out_MirrorTexture);
-
-/// Get a the underlying buffer as any compatible COM interface (similar to QueryInterface)
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] mirrorTexture Specifies an ovrMirrorTexture previously returned by ovr_CreateMirrorTextureDX
-/// \param[in] iid Specifies the interface ID of the interface pointer to query the buffer for.
-/// \param[out] out_Buffer Returns the COM interface pointer retrieved.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// <b>Example code</b>
-/// \code{.cpp}
-/// ID3D11Texture2D* d3d11Texture = nullptr;
-/// ovr_GetMirrorTextureBufferDX(session, mirrorTexture, IID_PPV_ARGS(&d3d11Texture));
-/// d3d11DeviceContext->CopyResource(d3d11TextureBackBuffer, d3d11Texture);
-/// d3d11Texture->Release();
-/// dxgiSwapChain->Present(0, 0);
-/// \endcode
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetMirrorTextureBufferDX(ovrSession session,
- ovrMirrorTexture mirrorTexture,
- IID iid,
- void** out_Buffer);
-
-
-#endif // _WIN32
-
-#endif // OVR_CAPI_D3D_h
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h
deleted file mode 100644
index 1658ca57..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h
+++ /dev/null
@@ -1,99 +0,0 @@
-/********************************************************************************//**
-\file OVR_CAPI_GL.h
-\brief OpenGL-specific structures used by the CAPI interface.
-\copyright Copyright 2015 Oculus VR, LLC. All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_GL_h
-#define OVR_CAPI_GL_h
-
-#include "OVR_CAPI.h"
-
-/// Creates a TextureSwapChain suitable for use with OpenGL.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] desc Specifies the requested texture properties. See notes for more info about texture format.
-/// \param[out] out_TextureSwapChain Returns the created ovrTextureSwapChain, which will be valid upon
-/// a successful return value, else it will be NULL. This texture swap chain must be eventually
-/// destroyed via ovr_DestroyTextureSwapChain before destroying the HMD with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// \note The \a format provided should be thought of as the format the distortion compositor will use when reading
-/// the contents of the texture. To that end, it is highly recommended that the application requests texture swap chain
-/// formats that are in sRGB-space (e.g. OVR_FORMAT_R8G8B8A8_UNORM_SRGB) as the distortion compositor does sRGB-correct
-/// rendering. Furthermore, the app should then make sure "glEnable(GL_FRAMEBUFFER_SRGB);" is called before rendering
-/// into these textures. Even though it is not recommended, if the application would like to treat the texture as a linear
-/// format and do linear-to-gamma conversion in GLSL, then the application can avoid calling "glEnable(GL_FRAMEBUFFER_SRGB);",
-/// but should still pass in an sRGB variant for the \a format. Failure to do so will cause the distortion compositor
-/// to apply incorrect gamma conversions leading to gamma-curve artifacts.
-///
-/// \see ovr_GetTextureSwapChainLength
-/// \see ovr_GetTextureSwapChainCurrentIndex
-/// \see ovr_GetTextureSwapChainDesc
-/// \see ovr_GetTextureSwapChainBufferGL
-/// \see ovr_DestroyTextureSwapChain
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateTextureSwapChainGL(ovrSession session,
- const ovrTextureSwapChainDesc* desc,
- ovrTextureSwapChain* out_TextureSwapChain);
-
-/// Get a specific buffer within the chain as a GL texture name
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] chain Specifies an ovrTextureSwapChain previously returned by ovr_CreateTextureSwapChainGL
-/// \param[in] index Specifies the index within the chain to retrieve. Must be between 0 and length (see ovr_GetTextureSwapChainLength)
-/// or may pass -1 to get the buffer at the CurrentIndex location. (Saving a call to GetTextureSwapChainCurrentIndex)
-/// \param[out] out_TexId Returns the GL texture object name associated with the specific index requested
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetTextureSwapChainBufferGL(ovrSession session,
- ovrTextureSwapChain chain,
- int index,
- unsigned int* out_TexId);
-
-
-/// Creates a Mirror Texture which is auto-refreshed to mirror Rift contents produced by this application.
-///
-/// A second call to ovr_CreateMirrorTextureGL for a given ovrSession before destroying the first one
-/// is not supported and will result in an error return.
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] desc Specifies the requested mirror texture description.
-/// \param[out] out_MirrorTexture Specifies the created ovrMirrorTexture, which will be valid upon a successful return value, else it will be NULL.
-/// This texture must be eventually destroyed via ovr_DestroyMirrorTexture before destroying the HMD with ovr_Destroy.
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-/// \note The \a format provided should be thought of as the format the distortion compositor will use when writing into the mirror
-/// texture. It is highly recommended that mirror textures are requested as sRGB formats because the distortion compositor
-/// does sRGB-correct rendering. If the application requests a non-sRGB format (e.g. R8G8B8A8_UNORM) as the mirror texture,
-/// then the application might have to apply a manual linear-to-gamma conversion when reading from the mirror texture.
-/// Failure to do so can result in incorrect gamma conversions leading to gamma-curve artifacts and color banding.
-///
-/// \see ovr_GetMirrorTextureBufferGL
-/// \see ovr_DestroyMirrorTexture
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_CreateMirrorTextureGL(ovrSession session,
- const ovrMirrorTextureDesc* desc,
- ovrMirrorTexture* out_MirrorTexture);
-
-/// Get a the underlying buffer as a GL texture name
-///
-/// \param[in] session Specifies an ovrSession previously returned by ovr_Create.
-/// \param[in] mirrorTexture Specifies an ovrMirrorTexture previously returned by ovr_CreateMirrorTextureGL
-/// \param[out] out_TexId Specifies the GL texture object name associated with the mirror texture
-///
-/// \return Returns an ovrResult indicating success or failure. In the case of failure, use
-/// ovr_GetLastErrorInfo to get more information.
-///
-OVR_PUBLIC_FUNCTION(ovrResult) ovr_GetMirrorTextureBufferGL(ovrSession session,
- ovrMirrorTexture mirrorTexture,
- unsigned int* out_TexId);
-
-
-#endif // OVR_CAPI_GL_h
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Keys.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Keys.h
deleted file mode 100644
index e3e9d689..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_CAPI_Keys.h
+++ /dev/null
@@ -1,53 +0,0 @@
-/********************************************************************************//**
-\file OVR_CAPI.h
-\brief Keys for CAPI proprty function calls
-\copyright Copyright 2015 Oculus VR, LLC All Rights reserved.
-************************************************************************************/
-
-#ifndef OVR_CAPI_Keys_h
-#define OVR_CAPI_Keys_h
-
-#include "OVR_Version.h"
-
-
-
-#define OVR_KEY_USER "User" // string
-
-#define OVR_KEY_NAME "Name" // string
-
-#define OVR_KEY_GENDER "Gender" // string "Male", "Female", or "Unknown"
-#define OVR_DEFAULT_GENDER "Unknown"
-
-#define OVR_KEY_PLAYER_HEIGHT "PlayerHeight" // float meters
-#define OVR_DEFAULT_PLAYER_HEIGHT 1.778f
-
-#define OVR_KEY_EYE_HEIGHT "EyeHeight" // float meters
-#define OVR_DEFAULT_EYE_HEIGHT 1.675f
-
-#define OVR_KEY_NECK_TO_EYE_DISTANCE "NeckEyeDistance" // float[2] meters
-#define OVR_DEFAULT_NECK_TO_EYE_HORIZONTAL 0.0805f
-#define OVR_DEFAULT_NECK_TO_EYE_VERTICAL 0.075f
-
-
-#define OVR_KEY_EYE_TO_NOSE_DISTANCE "EyeToNoseDist" // float[2] meters
-
-
-
-
-
-#define OVR_PERF_HUD_MODE "PerfHudMode" // int, allowed values are defined in enum ovrPerfHudMode
-
-#define OVR_LAYER_HUD_MODE "LayerHudMode" // int, allowed values are defined in enum ovrLayerHudMode
-#define OVR_LAYER_HUD_CURRENT_LAYER "LayerHudCurrentLayer" // int, The layer to show
-#define OVR_LAYER_HUD_SHOW_ALL_LAYERS "LayerHudShowAll" // bool, Hide other layers when the hud is enabled
-
-#define OVR_DEBUG_HUD_STEREO_MODE "DebugHudStereoMode" // int, allowed values are defined in enum ovrDebugHudStereoMode
-#define OVR_DEBUG_HUD_STEREO_GUIDE_INFO_ENABLE "DebugHudStereoGuideInfoEnable" // bool
-#define OVR_DEBUG_HUD_STEREO_GUIDE_SIZE "DebugHudStereoGuideSize2f" // float[2]
-#define OVR_DEBUG_HUD_STEREO_GUIDE_POSITION "DebugHudStereoGuidePosition3f" // float[3]
-#define OVR_DEBUG_HUD_STEREO_GUIDE_YAWPITCHROLL "DebugHudStereoGuideYawPitchRoll3f" // float[3]
-#define OVR_DEBUG_HUD_STEREO_GUIDE_COLOR "DebugHudStereoGuideColor4f" // float[4]
-
-
-
-#endif // OVR_CAPI_Keys_h
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_ErrorCode.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_ErrorCode.h
deleted file mode 100644
index ed0be0e7..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_ErrorCode.h
+++ /dev/null
@@ -1,209 +0,0 @@
-/********************************************************************************//**
-\file OVR_ErrorCode.h
-\brief This header provides LibOVR error code declarations.
-\copyright Copyright 2015-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_ErrorCode_h
-#define OVR_ErrorCode_h
-
-
-#include "OVR_Version.h"
-#include <stdint.h>
-
-
-
-
-
-
-
-#ifndef OVR_RESULT_DEFINED
-#define OVR_RESULT_DEFINED ///< Allows ovrResult to be independently defined.
-/// API call results are represented at the highest level by a single ovrResult.
-typedef int32_t ovrResult;
-#endif
-
-
-/// \brief Indicates if an ovrResult indicates success.
-///
-/// Some functions return additional successful values other than ovrSucces and
-/// require usage of this macro to indicate successs.
-///
-#if !defined(OVR_SUCCESS)
- #define OVR_SUCCESS(result) (result >= 0)
-#endif
-
-
-/// \brief Indicates if an ovrResult indicates an unqualified success.
-///
-/// This is useful for indicating that the code intentionally wants to
-/// check for result == ovrSuccess as opposed to OVR_SUCCESS(), which
-/// checks for result >= ovrSuccess.
-///
-#if !defined(OVR_UNQUALIFIED_SUCCESS)
- #define OVR_UNQUALIFIED_SUCCESS(result) (result == ovrSuccess)
-#endif
-
-
-/// \brief Indicates if an ovrResult indicates failure.
-///
-#if !defined(OVR_FAILURE)
- #define OVR_FAILURE(result) (!OVR_SUCCESS(result))
-#endif
-
-
-// Success is a value greater or equal to 0, while all error types are negative values.
-#ifndef OVR_SUCCESS_DEFINED
-#define OVR_SUCCESS_DEFINED ///< Allows ovrResult to be independently defined.
-typedef enum ovrSuccessType_
-{
- /// This is a general success result. Use OVR_SUCCESS to test for success.
- ovrSuccess = 0,
-
- /// Returned from a call to SubmitFrame. The call succeeded, but what the app
- /// rendered will not be visible on the HMD. Ideally the app should continue
- /// calling SubmitFrame, but not do any rendering. When the result becomes
- /// ovrSuccess, rendering should continue as usual.
- ovrSuccess_NotVisible = 1000,
-
- ovrSuccess_HMDFirmwareMismatch = 4100, ///< The HMD Firmware is out of date but is acceptable.
- ovrSuccess_TrackerFirmwareMismatch = 4101, ///< The Tracker Firmware is out of date but is acceptable.
- ovrSuccess_ControllerFirmwareMismatch = 4104, ///< The controller firmware is out of date but is acceptable.
- ovrSuccess_TrackerDriverNotFound = 4105, ///< The tracker driver interface was not found. Can be a temporary error
-
-} ovrSuccessType;
-#endif
-
-
-typedef enum ovrErrorType_
-{
- /* General errors */
- ovrError_MemoryAllocationFailure = -1000, ///< Failure to allocate memory.
- ovrError_SocketCreationFailure = -1001, ///< Failure to create a socket.
- ovrError_InvalidSession = -1002, ///< Invalid ovrSession parameter provided.
- ovrError_Timeout = -1003, ///< The operation timed out.
- ovrError_NotInitialized = -1004, ///< The system or component has not been initialized.
- ovrError_InvalidParameter = -1005, ///< Invalid parameter provided. See error info or log for details.
- ovrError_ServiceError = -1006, ///< Generic service error. See error info or log for details.
- ovrError_NoHmd = -1007, ///< The given HMD doesn't exist.
- ovrError_Unsupported = -1009, ///< Function call is not supported on this hardware/software
- ovrError_DeviceUnavailable = -1010, ///< Specified device type isn't available.
- ovrError_InvalidHeadsetOrientation = -1011, ///< The headset was in an invalid orientation for the requested operation (e.g. vertically oriented during ovr_RecenterPose).
- ovrError_ClientSkippedDestroy = -1012, ///< The client failed to call ovr_Destroy on an active session before calling ovr_Shutdown. Or the client crashed.
- ovrError_ClientSkippedShutdown = -1013, ///< The client failed to call ovr_Shutdown or the client crashed.
- ovrError_ServiceDeadlockDetected = -1014, ///< The service watchdog discovered a deadlock.
-
- /* Audio error range, reserved for Audio errors. */
- ovrError_AudioReservedBegin = -2000, ///< First Audio error.
- ovrError_AudioDeviceNotFound = -2001, ///< Failure to find the specified audio device.
- ovrError_AudioComError = -2002, ///< Generic COM error.
- ovrError_AudioReservedEnd = -2999, ///< Last Audio error.
-
- /* Initialization errors. */
- ovrError_Initialize = -3000, ///< Generic initialization error.
- ovrError_LibLoad = -3001, ///< Couldn't load LibOVRRT.
- ovrError_LibVersion = -3002, ///< LibOVRRT version incompatibility.
- ovrError_ServiceConnection = -3003, ///< Couldn't connect to the OVR Service.
- ovrError_ServiceVersion = -3004, ///< OVR Service version incompatibility.
- ovrError_IncompatibleOS = -3005, ///< The operating system version is incompatible.
- ovrError_DisplayInit = -3006, ///< Unable to initialize the HMD display.
- ovrError_ServerStart = -3007, ///< Unable to start the server. Is it already running?
- ovrError_Reinitialization = -3008, ///< Attempting to re-initialize with a different version.
- ovrError_MismatchedAdapters = -3009, ///< Chosen rendering adapters between client and service do not match
- ovrError_LeakingResources = -3010, ///< Calling application has leaked resources
- ovrError_ClientVersion = -3011, ///< Client version too old to connect to service
- ovrError_OutOfDateOS = -3012, ///< The operating system is out of date.
- ovrError_OutOfDateGfxDriver = -3013, ///< The graphics driver is out of date.
- ovrError_IncompatibleGPU = -3014, ///< The graphics hardware is not supported
- ovrError_NoValidVRDisplaySystem = -3015, ///< No valid VR display system found.
- ovrError_Obsolete = -3016, ///< Feature or API is obsolete and no longer supported.
- ovrError_DisabledOrDefaultAdapter = -3017, ///< No supported VR display system found, but disabled or driverless adapter found.
- ovrError_HybridGraphicsNotSupported = -3018, ///< The system is using hybrid graphics (Optimus, etc...), which is not support.
- ovrError_DisplayManagerInit = -3019, ///< Initialization of the DisplayManager failed.
- ovrError_TrackerDriverInit = -3020, ///< Failed to get the interface for an attached tracker
-
- /* Hardware errors */
- ovrError_InvalidBundleAdjustment = -4000, ///< Headset has no bundle adjustment data.
- ovrError_USBBandwidth = -4001, ///< The USB hub cannot handle the camera frame bandwidth.
- ovrError_USBEnumeratedSpeed = -4002, ///< The USB camera is not enumerating at the correct device speed.
- ovrError_ImageSensorCommError = -4003, ///< Unable to communicate with the image sensor.
- ovrError_GeneralTrackerFailure = -4004, ///< We use this to report various sensor issues that don't fit in an easily classifiable bucket.
- ovrError_ExcessiveFrameTruncation = -4005, ///< A more than acceptable number of frames are coming back truncated.
- ovrError_ExcessiveFrameSkipping = -4006, ///< A more than acceptable number of frames have been skipped.
- ovrError_SyncDisconnected = -4007, ///< The sensor is not receiving the sync signal (cable disconnected?).
- ovrError_TrackerMemoryReadFailure = -4008, ///< Failed to read memory from the sensor.
- ovrError_TrackerMemoryWriteFailure = -4009, ///< Failed to write memory from the sensor.
- ovrError_TrackerFrameTimeout = -4010, ///< Timed out waiting for a camera frame.
- ovrError_TrackerTruncatedFrame = -4011, ///< Truncated frame returned from sensor.
- ovrError_TrackerDriverFailure = -4012, ///< The sensor driver has encountered a problem.
- ovrError_TrackerNRFFailure = -4013, ///< The sensor wireless subsystem has encountered a problem.
- ovrError_HardwareGone = -4014, ///< The hardware has been unplugged
- ovrError_NordicEnabledNoSync = -4015, ///< The nordic indicates that sync is enabled but it is not sending sync pulses
- ovrError_NordicSyncNoFrames = -4016, ///< It looks like we're getting a sync signal, but no camera frames have been received
- ovrError_CatastrophicFailure = -4017, ///< A catastrophic failure has occurred. We will attempt to recover by resetting the device
- ovrError_CatastrophicTimeout = -4018, ///< The catastrophic recovery has timed out.
- ovrError_RepeatCatastrophicFail = -4019, ///< Catastrophic failure has repeated too many times.
- ovrError_USBOpenDeviceFailure = -4020, ///< Could not open handle for Rift device (likely already in use by another process).
- ovrError_HMDGeneralFailure = -4021, ///< Unexpected HMD issues that don't fit a specific bucket.
-
- ovrError_HMDFirmwareMismatch = -4100, ///< The HMD Firmware is out of date and is unacceptable.
- ovrError_TrackerFirmwareMismatch = -4101, ///< The sensor Firmware is out of date and is unacceptable.
- ovrError_BootloaderDeviceDetected = -4102, ///< A bootloader HMD is detected by the service.
- ovrError_TrackerCalibrationError = -4103, ///< The sensor calibration is missing or incorrect.
- ovrError_ControllerFirmwareMismatch = -4104, ///< The controller firmware is out of date and is unacceptable.
- ovrError_DevManDeviceDetected = -4105, ///< A DeviceManagement mode HMD is detected by the service.
- ovrError_RebootedBootloaderDevice = -4106, ///< Had to reboot bootloader device, which succeeded.
- ovrError_FailedRebootBootloaderDev = -4107, ///< Had to reboot bootloader device, which failed. Device is stuck in bootloader mode.
-
- ovrError_IMUTooManyLostSamples = -4200, ///< Too many lost IMU samples.
- ovrError_IMURateError = -4201, ///< IMU rate is outside of the expected range.
- ovrError_FeatureReportFailure = -4202, ///< A feature report has failed.
- ovrError_HMDWirelessTimeout = -4203, ///< HMD wireless interface never returned from busy state.
-
- ovrError_BootloaderAssertLog = -4300, ///< HMD Bootloader Assert Log was not empty.
- ovrError_AppAssertLog = -4301, ///< HMD App Assert Log was not empty.
-
- /* Synchronization errors */
- ovrError_Incomplete = -5000, ///< Requested async work not yet complete.
- ovrError_Abandoned = -5001, ///< Requested async work was abandoned and result is incomplete.
-
- /* Rendering errors */
- ovrError_DisplayLost = -6000, ///< In the event of a system-wide graphics reset or cable unplug this is returned to the app.
- ovrError_TextureSwapChainFull = -6001, ///< ovr_CommitTextureSwapChain was called too many times on a texture swapchain without calling submit to use the chain.
- ovrError_TextureSwapChainInvalid = -6002, ///< The ovrTextureSwapChain is in an incomplete or inconsistent state. Ensure ovr_CommitTextureSwapChain was called at least once first.
- ovrError_GraphicsDeviceReset = -6003, ///< Graphics device has been reset (TDR, etc...)
- ovrError_DisplayRemoved = -6004, ///< HMD removed from the display adapter
- ovrError_ContentProtectionNotAvailable = -6005,///<Content protection is not available for the display
- ovrError_ApplicationInvisible = -6006, ///< Application declared itself as an invisible type and is not allowed to submit frames.
- ovrError_Disallowed = -6007, ///< The given request is disallowed under the current conditions.
- ovrError_DisplayPluggedIncorrectly = -6008, ///< Display portion of HMD is plugged into an incompatible port (ex: IGP)
-
- /* Fatal errors */
- ovrError_RuntimeException = -7000, ///< A runtime exception occurred. The application is required to shutdown LibOVR and re-initialize it before this error state will be cleared.
-
-
- ovrError_MetricsUnknownApp = -90000,
- ovrError_MetricsDuplicateApp = -90001,
- ovrError_MetricsNoEvents = -90002,
- ovrError_MetricsRuntime = -90003,
- ovrError_MetricsFile = -90004,
- ovrError_MetricsNoClientInfo = -90005,
- ovrError_MetricsNoAppMetaData = -90006,
- ovrError_MetricsNoApp = -90007,
- ovrError_MetricsOafFailure = -90008,
- ovrError_MetricsSessionAlreadyActive = -90009,
- ovrError_MetricsSessionNotActive = -90010,
-
-} ovrErrorType;
-
-
-
-/// Provides information about the last error.
-/// \see ovr_GetLastErrorInfo
-typedef struct ovrErrorInfo_
-{
- ovrResult Result; ///< The result from the last API call that generated an error ovrResult.
- char ErrorString[512]; ///< A UTF8-encoded null-terminated English string describing the problem. The format of this string is subject to change in future versions.
-} ovrErrorInfo;
-
-#endif /* OVR_ErrorCode_h */
diff --git a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_Version.h b/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_Version.h
deleted file mode 100644
index dbfe4deb..00000000
--- a/examples/oculus_glfw_sample/OculusSDK/LibOVR/Include/OVR_Version.h
+++ /dev/null
@@ -1,60 +0,0 @@
-/********************************************************************************//**
-\file OVR_Version.h
-\brief This header provides LibOVR version identification.
-\copyright Copyright 2014-2016 Oculus VR, LLC All Rights reserved.
-*************************************************************************************/
-
-#ifndef OVR_Version_h
-#define OVR_Version_h
-
-
-
-/// Conventional string-ification macro.
-#if !defined(OVR_STRINGIZE)
- #define OVR_STRINGIZEIMPL(x) #x
- #define OVR_STRINGIZE(x) OVR_STRINGIZEIMPL(x)
-#endif
-
-
-// Master version numbers
-#define OVR_PRODUCT_VERSION 1 // Product version doesn't participate in semantic versioning.
-#define OVR_MAJOR_VERSION 1 // If you change these values then you need to also make sure to change LibOVR/Projects/Windows/LibOVR.props in parallel.
-#define OVR_MINOR_VERSION 4 //
-#define OVR_PATCH_VERSION 0
-#define OVR_BUILD_NUMBER 0
-
-// This is the ((product * 100) + major) version of the service that the DLL is compatible with.
-// When we backport changes to old versions of the DLL we update the old DLLs
-// to move this version number up to the latest version.
-// The DLL is responsible for checking that the service is the version it supports
-// and returning an appropriate error message if it has not been made compatible.
-#define OVR_DLL_COMPATIBLE_VERSION 101
-
-#define OVR_FEATURE_VERSION 0
-
-
-/// "Major.Minor.Patch"
-#if !defined(OVR_VERSION_STRING)
- #define OVR_VERSION_STRING OVR_STRINGIZE(OVR_MAJOR_VERSION.OVR_MINOR_VERSION.OVR_PATCH_VERSION)
-#endif
-
-
-/// "Major.Minor.Patch.Build"
-#if !defined(OVR_DETAILED_VERSION_STRING)
- #define OVR_DETAILED_VERSION_STRING OVR_STRINGIZE(OVR_MAJOR_VERSION.OVR_MINOR_VERSION.OVR_PATCH_VERSION.OVR_BUILD_NUMBER)
-#endif
-
-
-/// \brief file description for version info
-/// This appears in the user-visible file properties. It is intended to convey publicly
-/// available additional information such as feature builds.
-#if !defined(OVR_FILE_DESCRIPTION_STRING)
- #if defined(_DEBUG)
- #define OVR_FILE_DESCRIPTION_STRING "dev build debug"
- #else
- #define OVR_FILE_DESCRIPTION_STRING "dev build"
- #endif
-#endif
-
-
-#endif // OVR_Version_h