aboutsummaryrefslogtreecommitdiff
path: root/src/physac.h
diff options
context:
space:
mode:
authorraysan5 <raysan5@gmail.com>2016-06-09 20:01:59 +0200
committerraysan5 <raysan5@gmail.com>2016-06-09 20:01:59 +0200
commit558ec3891bc620d1481557ae291a9524e588b31e (patch)
tree86ded1a558e4fcdce4147cc01fd107b65e769db5 /src/physac.h
parentdcbfb83031fb4158699efa8127930fb6de967d11 (diff)
downloadraylib-558ec3891bc620d1481557ae291a9524e588b31e.tar.gz
raylib-558ec3891bc620d1481557ae291a9524e588b31e.zip
Converted physac module to header only
Diffstat (limited to 'src/physac.h')
-rw-r--r--src/physac.h684
1 files changed, 667 insertions, 17 deletions
diff --git a/src/physac.h b/src/physac.h
index b2ae2766..c8466a12 100644
--- a/src/physac.h
+++ b/src/physac.h
@@ -1,8 +1,45 @@
/**********************************************************************************************
*
-* [physac] raylib physics module - Basic functions to apply physics to 2D objects
+* physac 1.0 - 2D Physics library for raylib (https://github.com/raysan5/raylib)
*
-* Copyright (c) 2016 Victor Fisac and Ramon Santamaria
+* // TODO: Description...
+*
+* CONFIGURATION:
+*
+* #define PHYSAC_IMPLEMENTATION
+* Generates the implementation of the library into the included file.
+* If not defined, the library is in header only mode and can be included in other headers
+* or source files without problems. But only ONE file should hold the implementation.
+*
+* #define PHYSAC_STATIC (defined by default)
+* The generated implementation will stay private inside implementation file and all
+* internal symbols and functions will only be visible inside that file.
+*
+* #define PHYSAC_STANDALONE
+* Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
+* internally in the library and input management and drawing functions must be provided by
+* the user (check library implementation for further details).
+*
+* #define PHYSAC_MALLOC()
+* #define PHYSAC_FREE()
+* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
+* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
+*
+* LIMITATIONS:
+*
+* // TODO.
+*
+* VERSIONS:
+*
+* 1.0 (09-Jun-2016) Module names review and converted to header-only.
+* 0.9 (23-Mar-2016) Complete module redesign, steps-based for better physics resolution.
+* 0.3 (13-Feb-2016) Reviewed to add PhysicObjects pool.
+* 0.2 (03-Jan-2016) Improved physics calculations.
+* 0.1 (30-Dec-2015) Initial release.
+*
+* LICENSE: zlib/libpng
+*
+* Copyright (c) 2016 Victor Fisac (main developer) and Ramon Santamaria
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
@@ -24,6 +61,21 @@
#ifndef PHYSAC_H
#define PHYSAC_H
+#if !defined(RAYGUI_STANDALONE)
+ #include "raylib.h"
+#endif
+
+#define PHYSAC_STATIC
+#ifdef PHYSAC_STATIC
+ #define PHYSACDEF static // Functions just visible to module including this file
+#else
+ #ifdef __cplusplus
+ #define PHYSACDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
+ #else
+ #define PHYSACDEF extern // Functions visible from other files
+ #endif
+#endif
+
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
@@ -33,12 +85,28 @@
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
+#if defined(PHYSAC_STANDALONE)
+ #ifndef __cplusplus
+ // Boolean type
+ #ifndef true
+ typedef enum { false, true } bool;
+ #endif
+ #endif
-// Vector2 type
-typedef struct Vector2 {
- float x;
- float y;
-} Vector2;
+ // Vector2 type
+ typedef struct Vector2 {
+ float x;
+ float y;
+ } Vector2;
+
+ // Rectangle type
+ typedef struct Rectangle {
+ int x;
+ int y;
+ int width;
+ int height;
+ } Rectangle;
+#endif
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
@@ -66,13 +134,13 @@ typedef struct Collider {
int radius; // Used for COLLIDER_CIRCLE
} Collider;
-typedef struct PhysicObjectData {
+typedef struct PhysicBodyData {
unsigned int id;
Transform transform;
Rigidbody rigidbody;
Collider collider;
bool enabled;
-} PhysicObjectData, *PhysicObject;
+} PhysicBodyData, *PhysicBody;
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
@@ -81,20 +149,602 @@ extern "C" { // Prevents name mangling of functions
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
-void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
-void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
-void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
+PHYSACDEF void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
+PHYSACDEF void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
+PHYSACDEF void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
-PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
-void DestroyPhysicObject(PhysicObject pObj); // Destroy a specific physic object and take it out of the list
+PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
+PHYSACDEF void DestroyPhysicBody(PhysicBody pbody); // Destroy a specific physic body and take it out of the list
-void ApplyForce(PhysicObject pObj, Vector2 force); // Apply directional force to a physic object
-void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
+PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force); // Apply directional force to a physic body
+PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
-Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
+PHYSACDEF Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
#ifdef __cplusplus
}
#endif
#endif // PHYSAC_H
+
+
+/***********************************************************************************
+*
+* PHYSAC IMPLEMENTATION
+*
+************************************************************************************/
+
+#if defined(PHYSAC_IMPLEMENTATION)
+
+// Check if custom malloc/free functions defined, if not, using standard ones
+#if !defined(PHYSAC_MALLOC)
+ #include <stdlib.h> // Required for: malloc(), free()
+
+ #define PHYSAC_MALLOC(size) malloc(size)
+ #define PHYSAC_FREE(ptr) free(ptr)
+#endif
+
+#include <math.h> // Required for: cos(), sin(), abs(), fminf()
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define MAX_PHYSIC_BODIES 256 // Maximum available physic bodies slots in bodies pool
+#define PHYSICS_STEPS 450 // Physics update steps number (divided calculations in steps per frame) to get more accurately collisions detections
+#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
+#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
+
+//----------------------------------------------------------------------------------
+// Types and Structures Definition
+// NOTE: Below types are required for PHYSAC_STANDALONE usage
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+static PhysicBody physicBodies[MAX_PHYSIC_BODIES]; // Physic bodies pool
+static int physicBodiesCount; // Counts current enabled physic bodies
+static Vector2 gravityForce; // Gravity force
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Declaration
+//----------------------------------------------------------------------------------
+static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
+static float Vector2Length(Vector2 v); // Returns the length of a Vector2
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition
+//----------------------------------------------------------------------------------
+
+// Initializes pointers array (just pointers, fixed size)
+PHYSACDEF void InitPhysics(Vector2 gravity)
+{
+ // Initialize physics variables
+ physicBodiesCount = 0;
+ gravityForce = gravity;
+}
+
+// Update physic objects, calculating physic behaviours and collisions detection
+PHYSACDEF void UpdatePhysics()
+{
+ // Reset all physic objects is grounded state
+ for (int i = 0; i < physicBodiesCount; i++) physicBodies[i]->rigidbody.isGrounded = false;
+
+ for (int steps = 0; steps < PHYSICS_STEPS; steps++)
+ {
+ for (int i = 0; i < physicBodiesCount; i++)
+ {
+ if (physicBodies[i]->enabled)
+ {
+ // Update physic behaviour
+ if (physicBodies[i]->rigidbody.enabled)
+ {
+ // Apply friction to acceleration in X axis
+ if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
+
+ // Apply friction to acceleration in Y axis
+ if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
+
+ // Apply friction to velocity in X axis
+ if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else physicBodies[i]->rigidbody.velocity.x = 0.0f;
+
+ // Apply friction to velocity in Y axis
+ if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
+ else physicBodies[i]->rigidbody.velocity.y = 0.0f;
+
+ // Apply gravity to velocity
+ if (physicBodies[i]->rigidbody.applyGravity)
+ {
+ physicBodies[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
+ physicBodies[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
+ }
+
+ // Apply acceleration to velocity
+ physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
+ physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
+
+ // Apply velocity to position
+ physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x/PHYSICS_STEPS;
+ physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y/PHYSICS_STEPS;
+ }
+
+ // Update collision detection
+ if (physicBodies[i]->collider.enabled)
+ {
+ // Update collider bounds
+ physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
+
+ // Check collision with other colliders
+ for (int k = 0; k < physicBodiesCount; k++)
+ {
+ if (physicBodies[k]->collider.enabled && i != k)
+ {
+ // Resolve physic collision
+ // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
+ // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
+
+ // 1. Calculate collision normal
+ // -------------------------------------------------------------------------------------------------------------------------------------
+
+ // Define collision contact normal, direction and penetration depth
+ Vector2 contactNormal = { 0.0f, 0.0f };
+ Vector2 direction = { 0.0f, 0.0f };
+ float penetrationDepth = 0.0f;
+
+ switch (physicBodies[i]->collider.type)
+ {
+ case COLLIDER_RECTANGLE:
+ {
+ switch (physicBodies[k]->collider.type)
+ {
+ case COLLIDER_RECTANGLE:
+ {
+ // Check if colliders are overlapped
+ if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
+ {
+ // Calculate direction vector from i to k
+ direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
+ direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
+
+ // Define overlapping and penetration attributes
+ Vector2 overlap;
+
+ // Calculate overlap on X axis
+ overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
+
+ // SAT test on X axis
+ if (overlap.x > 0.0f)
+ {
+ // Calculate overlap on Y axis
+ overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
+
+ // SAT test on Y axis
+ if (overlap.y > 0.0f)
+ {
+ // Find out which axis is axis of least penetration
+ if (overlap.y > overlap.x)
+ {
+ // Point towards k knowing that direction points from i to k
+ if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
+ else contactNormal = (Vector2){ 1.0f, 0.0f };
+
+ // Update penetration depth for position correction
+ penetrationDepth = overlap.x;
+ }
+ else
+ {
+ // Point towards k knowing that direction points from i to k
+ if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
+ else contactNormal = (Vector2){ 0.0f, -1.0f };
+
+ // Update penetration depth for position correction
+ penetrationDepth = overlap.y;
+ }
+ }
+ }
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
+ {
+ // Calculate direction vector between circles
+ direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
+ direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
+
+ // Calculate closest point on rectangle to circle
+ Vector2 closestPoint = { 0.0f, 0.0f };
+ if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
+ else closestPoint.x = physicBodies[i]->collider.bounds.x;
+
+ if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
+ else closestPoint.y = physicBodies[i]->collider.bounds.y;
+
+ // Check if the closest point is inside the circle
+ if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
+ {
+ // Recalculate direction based on closest point position
+ direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
+ direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
+ float distance = Vector2Length(direction);
+
+ // Calculate final contact normal
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
+
+ // Calculate penetration depth
+ penetrationDepth = physicBodies[k]->collider.radius - distance;
+ }
+ else
+ {
+ if (abs(direction.y) < abs(direction.x))
+ {
+ // Calculate final contact normal
+ if (direction.y > 0.0f)
+ {
+ contactNormal = (Vector2){ 0.0f, -1.0f };
+ penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
+ }
+ else
+ {
+ contactNormal = (Vector2){ 0.0f, 1.0f };
+ penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
+ }
+ }
+ else
+ {
+ // Calculate final contact normal
+ if (direction.x > 0.0f)
+ {
+ contactNormal = (Vector2){ 1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
+ }
+ else
+ {
+ contactNormal = (Vector2){ -1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
+ }
+ }
+ }
+ }
+ } break;
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ switch (physicBodies[k]->collider.type)
+ {
+ case COLLIDER_RECTANGLE:
+ {
+ if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
+ {
+ // Calculate direction vector between circles
+ direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
+ direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
+
+ // Calculate closest point on rectangle to circle
+ Vector2 closestPoint = { 0.0f, 0.0f };
+ if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
+ else closestPoint.x = physicBodies[k]->collider.bounds.x;
+
+ if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
+ else closestPoint.y = physicBodies[k]->collider.bounds.y;
+
+ // Check if the closest point is inside the circle
+ if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
+ {
+ // Recalculate direction based on closest point position
+ direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
+ direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
+ float distance = Vector2Length(direction);
+
+ // Calculate final contact normal
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
+
+ // Calculate penetration depth
+ penetrationDepth = physicBodies[k]->collider.radius - distance;
+ }
+ else
+ {
+ if (abs(direction.y) < abs(direction.x))
+ {
+ // Calculate final contact normal
+ if (direction.y > 0.0f)
+ {
+ contactNormal = (Vector2){ 0.0f, -1.0f };
+ penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
+ }
+ else
+ {
+ contactNormal = (Vector2){ 0.0f, 1.0f };
+ penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
+ }
+ }
+ else
+ {
+ // Calculate final contact normal and penetration depth
+ if (direction.x > 0.0f)
+ {
+ contactNormal = (Vector2){ 1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
+ }
+ else
+ {
+ contactNormal = (Vector2){ -1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
+ }
+ }
+ }
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ // Check if colliders are overlapped
+ if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
+ {
+ // Calculate direction vector between circles
+ direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
+ direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
+
+ // Calculate distance between circles
+ float distance = Vector2Length(direction);
+
+ // Check if circles are not completely overlapped
+ if (distance != 0.0f)
+ {
+ // Calculate contact normal direction (Y axis needs to be flipped)
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
+ }
+ else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
+ }
+ } break;
+ default: break;
+ }
+ } break;
+ default: break;
+ }
+
+ // Update rigidbody grounded state
+ if (physicBodies[i]->rigidbody.enabled)
+ {
+ if (contactNormal.y < 0.0f) physicBodies[i]->rigidbody.isGrounded = true;
+ }
+
+ // 2. Calculate collision impulse
+ // -------------------------------------------------------------------------------------------------------------------------------------
+
+ // Calculate relative velocity
+ Vector2 relVelocity = { 0.0f, 0.0f };
+ relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
+ relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
+
+ // Calculate relative velocity in terms of the normal direction
+ float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
+
+ // Dot not resolve if velocities are separating
+ if (velAlongNormal <= 0.0f)
+ {
+ // Calculate minimum bounciness value from both objects
+ float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
+
+ // Calculate impulse scalar value
+ float j = -(1.0f + e)*velAlongNormal;
+ j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
+
+ // Calculate final impulse vector
+ Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
+
+ // Calculate collision mass ration
+ float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
+ float ratio = 0.0f;
+
+ // Apply impulse to current rigidbodies velocities if they are enabled
+ if (physicBodies[i]->rigidbody.enabled)
+ {
+ // Calculate inverted mass ration
+ ratio = physicBodies[i]->rigidbody.mass/massSum;
+
+ // Apply impulse direction to velocity
+ physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ }
+
+ if (physicBodies[k]->rigidbody.enabled)
+ {
+ // Calculate inverted mass ration
+ ratio = physicBodies[k]->rigidbody.mass/massSum;
+
+ // Apply impulse direction to velocity
+ physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ }
+
+ // 3. Correct colliders overlaping (transform position)
+ // ---------------------------------------------------------------------------------------------------------------------------------
+
+ // Calculate transform position penetration correction
+ Vector2 posCorrection;
+ posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
+ posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
+
+ // Fix transform positions
+ if (physicBodies[i]->rigidbody.enabled)
+ {
+ // Fix physic objects transform position
+ physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
+ physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
+
+ // Update collider bounds
+ physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
+
+ if (physicBodies[k]->rigidbody.enabled)
+ {
+ // Fix physic objects transform position
+ physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
+ physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
+
+ // Update collider bounds
+ physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// Unitialize all physic objects and empty the objects pool
+PHYSACDEF void ClosePhysics()
+{
+ // Free all dynamic memory allocations
+ for (int i = 0; i < physicBodiesCount; i++) PHYSAC_FREE(physicBodies[i]);
+
+ // Reset enabled physic objects count
+ physicBodiesCount = 0;
+}
+
+// Create a new physic body dinamically, initialize it and add to pool
+PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale)
+{
+ // Allocate dynamic memory
+ PhysicBody obj = (PhysicBody)PHYSAC_MALLOC(sizeof(PhysicBodyData));
+
+ // Initialize physic body values with generic values
+ obj->id = physicBodiesCount;
+ obj->enabled = true;
+
+ obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
+
+ obj->rigidbody.enabled = false;
+ obj->rigidbody.mass = 1.0f;
+ obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
+ obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
+ obj->rigidbody.applyGravity = false;
+ obj->rigidbody.isGrounded = false;
+ obj->rigidbody.friction = 0.0f;
+ obj->rigidbody.bounciness = 0.0f;
+
+ obj->collider.enabled = true;
+ obj->collider.type = COLLIDER_RECTANGLE;
+ obj->collider.bounds = TransformToRectangle(obj->transform);
+ obj->collider.radius = 0.0f;
+
+ // Add new physic body to the pointers array
+ physicBodies[physicBodiesCount] = obj;
+
+ // Increase enabled physic bodies count
+ physicBodiesCount++;
+
+ return obj;
+}
+
+// Destroy a specific physic body and take it out of the list
+PHYSACDEF void DestroyPhysicBody(PhysicBody pbody)
+{
+ // Free dynamic memory allocation
+ PHYSAC_FREE(physicBodies[pbody->id]);
+
+ // Remove *obj from the pointers array
+ for (int i = pbody->id; i < physicBodiesCount; i++)
+ {
+ // Resort all the following pointers of the array
+ if ((i + 1) < physicBodiesCount)
+ {
+ physicBodies[i] = physicBodies[i + 1];
+ physicBodies[i]->id = physicBodies[i + 1]->id;
+ }
+ else PHYSAC_FREE(physicBodies[i]);
+ }
+
+ // Decrease enabled physic bodies count
+ physicBodiesCount--;
+}
+
+// Apply directional force to a physic body
+PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force)
+{
+ if (pbody->rigidbody.enabled)
+ {
+ pbody->rigidbody.velocity.x += force.x/pbody->rigidbody.mass;
+ pbody->rigidbody.velocity.y += force.y/pbody->rigidbody.mass;
+ }
+}
+
+// Apply radial force to all physic objects in range
+PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius)
+{
+ for (int i = 0; i < physicBodiesCount; i++)
+ {
+ if (physicBodies[i]->rigidbody.enabled)
+ {
+ // Calculate direction and distance between force and physic body position
+ Vector2 distance = (Vector2){ physicBodies[i]->transform.position.x - position.x, physicBodies[i]->transform.position.y - position.y };
+
+ if (physicBodies[i]->collider.type == COLLIDER_RECTANGLE)
+ {
+ distance.x += physicBodies[i]->transform.scale.x/2;
+ distance.y += physicBodies[i]->transform.scale.y/2;
+ }
+
+ float distanceLength = Vector2Length(distance);
+
+ // Check if physic body is in force range
+ if (distanceLength <= radius)
+ {
+ // Normalize force direction
+ distance.x /= distanceLength;
+ distance.y /= -distanceLength;
+
+ // Calculate final force
+ Vector2 finalForce = { distance.x*force, distance.y*force };
+
+ // Apply force to the physic body
+ ApplyForce(physicBodies[i], finalForce);
+ }
+ }
+ }
+}
+
+// Convert Transform data type to Rectangle (position and scale)
+PHYSACDEF Rectangle TransformToRectangle(Transform transform)
+{
+ return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
+}
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Definition
+//----------------------------------------------------------------------------------
+
+// Returns the dot product of two Vector2
+static float Vector2DotProduct(Vector2 v1, Vector2 v2)
+{
+ float result;
+
+ result = v1.x*v2.x + v1.y*v2.y;
+
+ return result;
+}
+
+static float Vector2Length(Vector2 v)
+{
+ float result;
+
+ result = sqrt(v.x*v.x + v.y*v.y);
+
+ return result;
+}
+
+#endif // PHYSAC_IMPLEMENTATION \ No newline at end of file