aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorvictorfisac <victorfisac@gmail.com>2016-03-16 12:45:01 +0100
committervictorfisac <victorfisac@gmail.com>2016-03-16 12:45:01 +0100
commit7128ef686d9c09d0ec3b413c07bb1cc24f03d219 (patch)
tree1e6559fb3c1a0d8c684f0d114916e827f163b342 /src
parentd72849409982266b99dd00741bf807ef10ba3c6c (diff)
downloadraylib-7128ef686d9c09d0ec3b413c07bb1cc24f03d219.tar.gz
raylib-7128ef686d9c09d0ec3b413c07bb1cc24f03d219.zip
physac module redesign (2/3)
physac module base almost finished. All collisions are now resolved properly and some force functions was added. COLLIDER_CAPSULE removed for now because in 2D everything is composed by rectangle and circle colliders... The last step is move physics update loop into another thread and update it in a fixed time step based on fps.
Diffstat (limited to 'src')
-rw-r--r--src/physac.c494
-rw-r--r--src/physac.h9
2 files changed, 371 insertions, 132 deletions
diff --git a/src/physac.c b/src/physac.c
index 13247117..718a06bb 100644
--- a/src/physac.c
+++ b/src/physac.c
@@ -36,10 +36,9 @@
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_OBJECTS 256
-#define PHYSICS_GRAVITY -9.81f/2
#define PHYSICS_STEPS 450
-#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
-#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
+#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
+#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//----------------------------------------------------------------------------------
// Types and Structures Definition
@@ -52,53 +51,70 @@
//----------------------------------------------------------------------------------
static PhysicObject *physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
static int physicObjectsCount; // Counts current enabled physic objects
+static Vector2 gravityForce; // Gravity force
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
+static float Vector2Length(Vector2 v); // Returns the length of a Vector2
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes pointers array (just pointers, fixed size)
-void InitPhysics()
+void InitPhysics(Vector2 gravity)
{
// Initialize physics variables
physicObjectsCount = 0;
+ gravityForce = gravity;
}
// Update physic objects, calculating physic behaviours and collisions detection
void UpdatePhysics()
{
// Reset all physic objects is grounded state
- for(int i = 0; i < physicObjectsCount; i++)
+ for (int i = 0; i < physicObjectsCount; i++)
{
- if(physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
+ if (physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
}
- for(int steps = 0; steps < PHYSICS_STEPS; steps++)
+ for (int steps = 0; steps < PHYSICS_STEPS; steps++)
{
- for(int i = 0; i < physicObjectsCount; i++)
+ for (int i = 0; i < physicObjectsCount; i++)
{
- if(physicObjects[i]->enabled)
+ if (physicObjects[i]->enabled)
{
// Update physic behaviour
- if(physicObjects[i]->rigidbody.enabled)
+ if (physicObjects[i]->rigidbody.enabled)
{
// Apply friction to acceleration in X axis
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
+ // Apply friction to acceleration in Y axis
+ if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+ else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+ else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
+
// Apply friction to velocity in X axis
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.x = 0.0f;
+ // Apply friction to velocity in Y axis
+ if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+ else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
+ else physicObjects[i]->rigidbody.velocity.y = 0.0f;
+
// Apply gravity to velocity
- if (physicObjects[i]->rigidbody.applyGravity) physicObjects[i]->rigidbody.velocity.y += PHYSICS_GRAVITY/PHYSICS_STEPS;
+ if (physicObjects[i]->rigidbody.applyGravity)
+ {
+ physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
+ physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
+ }
// Apply acceleration to velocity
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
@@ -120,142 +136,314 @@ void UpdatePhysics()
{
if (physicObjects[k]->collider.enabled && i != k)
{
- // Check if colliders are overlapped
- if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
+ // Resolve physic collision
+ // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
+ // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
+
+ // 1. Calculate collision normal
+ // -------------------------------------------------------------------------------------------------------------------------------------
+
+ // Define collision contact normal, direction and penetration depth
+ Vector2 contactNormal = { 0.0f, 0.0f };
+ Vector2 direction = { 0.0f, 0.0f };
+ float penetrationDepth = 0.0f;
+
+ switch(physicObjects[i]->collider.type)
{
- // Resolve physic collision
- // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
- // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
-
- // 1. Calculate collision normal
- // -------------------------------------------------------------------------------------------------------------------------------------
-
- // Define collision ontact normal
- Vector2 contactNormal = { 0.0f, 0.0f };
+ case COLLIDER_RECTANGLE:
+ {
+ switch(physicObjects[k]->collider.type)
+ {
+ case COLLIDER_RECTANGLE:
+ {
+ // Check if colliders are overlapped
+ if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
+ {
+ // Calculate direction vector from i to k
+ direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
+ direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
+
+ // Define overlapping and penetration attributes
+ Vector2 overlap;
+
+ // Calculate overlap on X axis
+ overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
+
+ // SAT test on X axis
+ if (overlap.x > 0.0f)
+ {
+ // Calculate overlap on Y axis
+ overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
+
+ // SAT test on Y axis
+ if (overlap.y > 0.0f)
+ {
+ // Find out which axis is axis of least penetration
+ if (overlap.y > overlap.x)
+ {
+ // Point towards k knowing that direction points from i to k
+ if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
+ else contactNormal = (Vector2){ 1.0f, 0.0f };
+
+ // Update penetration depth for position correction
+ penetrationDepth = overlap.x;
+ }
+ else
+ {
+ // Point towards k knowing that direction points from i to k
+ if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
+ else contactNormal = (Vector2){ 0.0f, -1.0f };
+
+ // Update penetration depth for position correction
+ penetrationDepth = overlap.y;
+ }
+ }
+ }
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
+ {
+ // Calculate direction vector between circles
+ direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
+ direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
+
+ // Calculate closest point on rectangle to circle
+ Vector2 closestPoint = { 0.0f, 0.0f };
+ if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
+ else closestPoint.x = physicObjects[i]->collider.bounds.x;
+
+ if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
+ else closestPoint.y = physicObjects[i]->collider.bounds.y;
+
+ // Check if the closest point is inside the circle
+ if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
+ {
+ // Recalculate direction based on closest point position
+ direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
+ direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
+ float distance = Vector2Length(direction);
+
+ // Calculate final contact normal
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
+
+ // Calculate penetration depth
+ penetrationDepth = physicObjects[k]->collider.radius - distance;
+ }
+ else
+ {
+ if (abs(direction.y) < abs(direction.x))
+ {
+ // Calculate final contact normal
+ if (direction.y > 0.0f)
+ {
+ contactNormal = (Vector2){ 0.0f, -1.0f };
+ penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
+ }
+ else
+ {
+ contactNormal = (Vector2){ 0.0f, 1.0f };
+ penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
+ }
+ }
+ else
+ {
+ // Calculate final contact normal
+ if (direction.x > 0.0f)
+ {
+ contactNormal = (Vector2){ 1.0f, 0.0f };
+ penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
+ }
+ else
+ {
+ contactNormal = (Vector2){ -1.0f, 0.0f };
+ penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
+ }
+ }
+ }
+ }
+ } break;
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ switch(physicObjects[k]->collider.type)
+ {
+ case COLLIDER_RECTANGLE:
+ {
+ if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
+ {
+ // Calculate direction vector between circles
+ direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
+ direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
+
+ // Calculate closest point on rectangle to circle
+ Vector2 closestPoint = { 0.0f, 0.0f };
+ if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
+ else closestPoint.x = physicObjects[k]->collider.bounds.x;
+
+ if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
+ else closestPoint.y = physicObjects[k]->collider.bounds.y;
+
+ // Check if the closest point is inside the circle
+ if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
+ {
+ // Recalculate direction based on closest point position
+ direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
+ direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
+ float distance = Vector2Length(direction);
+
+ // Calculate final contact normal
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
+
+ // Calculate penetration depth
+ penetrationDepth = physicObjects[k]->collider.radius - distance;
+ }
+ else
+ {
+ if (abs(direction.y) < abs(direction.x))
+ {
+ // Calculate final contact normal
+ if (direction.y > 0.0f)
+ {
+ contactNormal = (Vector2){ 0.0f, -1.0f };
+ penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
+ }
+ else
+ {
+ contactNormal = (Vector2){ 0.0f, 1.0f };
+ penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
+ }
+ }
+ else
+ {
+ // Calculate final contact normal and penetration depth
+ if (direction.x > 0.0f)
+ {
+ contactNormal = (Vector2){ 1.0f, 0.0f };
+ penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
+ }
+ else
+ {
+ contactNormal = (Vector2){ -1.0f, 0.0f };
+ penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
+ }
+ }
+ }
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ // Check if colliders are overlapped
+ if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
+ {
+ // Calculate direction vector between circles
+ direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
+ direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
+
+ // Calculate distance between circles
+ float distance = Vector2Length(direction);
+
+ // Check if circles are not completely overlapped
+ if (distance != 0.0f)
+ {
+ // Calculate contact normal direction (Y axis needs to be flipped)
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
+ }
+ else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
+ }
+ } break;
+ default: break;
+ }
+ } break;
+ default: break;
+ }
+
+ // Update rigidbody grounded state
+ if (physicObjects[i]->rigidbody.enabled)
+ {
+ if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
+ }
+
+ // 2. Calculate collision impulse
+ // -------------------------------------------------------------------------------------------------------------------------------------
+
+ // Calculate relative velocity
+ Vector2 relVelocity = { 0.0f, 0.0f };
+ relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
+ relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
+
+ // Calculate relative velocity in terms of the normal direction
+ float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
+
+ // Dot not resolve if velocities are separating
+ if (velAlongNormal <= 0.0f)
+ {
+ // Calculate minimum bounciness value from both objects
+ float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
- // Calculate direction vector from i to k
- Vector2 direction;
- direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
- direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
+ // Calculate impulse scalar value
+ float j = -(1.0f + e)*velAlongNormal;
+ j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
- // Define overlapping and penetration attributes
- Vector2 overlap;
- float penetrationDepth = 0.0f;
+ // Calculate final impulse vector
+ Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
- // Calculate overlap on X axis
- overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
+ // Calculate collision mass ration
+ float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
+ float ratio = 0.0f;
- // SAT test on X axis
- if (overlap.x > 0.0f)
+ // Apply impulse to current rigidbodies velocities if they are enabled
+ if (physicObjects[i]->rigidbody.enabled)
{
- // Calculate overlap on Y axis
- overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
+ // Calculate inverted mass ration
+ ratio = physicObjects[i]->rigidbody.mass/massSum;
- // SAT test on Y axis
- if (overlap.y > 0.0f)
- {
- // Find out which axis is axis of least penetration
- if (overlap.y > overlap.x)
- {
- // Point towards k knowing that direction points from i to k
- if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
- else contactNormal = (Vector2){ 1.0f, 0.0f };
-
- // Update penetration depth for position correction
- penetrationDepth = overlap.x;
- }
- else
- {
- // Point towards k knowing that direction points from i to k
- if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
- else contactNormal = (Vector2){ 0.0f, -1.0f };
-
- // Update penetration depth for position correction
- penetrationDepth = overlap.y;
- }
- }
+ // Apply impulse direction to velocity
+ physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
+ physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
- // Update rigidbody grounded state
- if (physicObjects[i]->rigidbody.enabled)
+ if (physicObjects[k]->rigidbody.enabled)
{
- if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
+ // Calculate inverted mass ration
+ ratio = physicObjects[k]->rigidbody.mass/massSum;
+
+ // Apply impulse direction to velocity
+ physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
+ physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
- // 2. Calculate collision impulse
- // -------------------------------------------------------------------------------------------------------------------------------------
+ // 3. Correct colliders overlaping (transform position)
+ // ---------------------------------------------------------------------------------------------------------------------------------
- // Calculate relative velocity
- Vector2 relVelocity = { physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x, physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y };
-
- // Calculate relative velocity in terms of the normal direction
- float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
-
- // Dot not resolve if velocities are separating
- if (velAlongNormal <= 0.0f)
- {
- // Calculate minimum bounciness value from both objects
- float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
-
- // Calculate impulse scalar value
- float j = -(1.0f + e) * velAlongNormal;
- j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
-
- // Calculate final impulse vector
- Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
-
- // Calculate collision mass ration
- float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
- float ratio = 0.0f;
+ // Calculate transform position penetration correction
+ Vector2 posCorrection;
+ posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
+ posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
+
+ // Fix transform positions
+ if (physicObjects[i]->rigidbody.enabled)
+ {
+ // Fix physic objects transform position
+ physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
+ physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
- // Apply impulse to current rigidbodies velocities if they are enabled
- if (physicObjects[i]->rigidbody.enabled)
- {
- // Calculate inverted mass ration
- ratio = physicObjects[i]->rigidbody.mass/massSum;
-
- // Apply impulse direction to velocity
- physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio;
- physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio;
- }
+ // Update collider bounds
+ physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
- if (physicObjects[k]->rigidbody.enabled)
+ if (physicObjects[k]->rigidbody.enabled)
{
- // Calculate inverted mass ration
- ratio = physicObjects[k]->rigidbody.mass/massSum;
-
- // Apply impulse direction to velocity
- physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio;
- physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio;
- }
-
- // 3. Correct colliders overlaping (transform position)
- // ---------------------------------------------------------------------------------------------------------------------------------
-
- // Calculate transform position penetration correction
- Vector2 posCorrection;
- posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
- posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
-
- // Fix transform positions
- if (physicObjects[i]->rigidbody.enabled)
- {
// Fix physic objects transform position
- physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
- physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
+ physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
+ physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
- physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
-
- if (physicObjects[k]->rigidbody.enabled)
- {
- // Fix physic objects transform position
- physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
- physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
-
- // Update collider bounds
- physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
- }
+ physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
}
}
}
@@ -298,7 +486,7 @@ PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale
obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f;
- obj->collider.enabled = false;
+ obj->collider.enabled = true;
obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f;
@@ -334,6 +522,45 @@ void DestroyPhysicObject(PhysicObject *pObj)
physicObjectsCount--;
}
+// Apply directional force to a physic object
+void ApplyForce(PhysicObject *pObj, Vector2 force)
+{
+ if (pObj->rigidbody.enabled)
+ {
+ pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
+ pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
+ }
+}
+
+// Apply radial force to all physic objects in range
+void ApplyForceAtPosition(Vector2 position, float force, float radius)
+{
+ for(int i = 0; i < physicObjectsCount; i++)
+ {
+ // Calculate direction and distance between force and physic object pposition
+ Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
+
+ if(physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
+ {
+ distance.x += physicObjects[i]->transform.scale.x/2;
+ distance.y += physicObjects[i]->transform.scale.y/2;
+ }
+
+ float distanceLength = Vector2Length(distance);
+
+ // Check if physic object is in force range
+ if(distanceLength <= radius)
+ {
+ // Normalize force direction
+ distance.x /= distanceLength;
+ distance.y /= -distanceLength;
+
+ // Apply force to the physic object
+ ApplyForce(physicObjects[i], (Vector2){ distance.x*force, distance.y*force });
+ }
+ }
+}
+
// Convert Transform data type to Rectangle (position and scale)
Rectangle TransformToRectangle(Transform transform)
{
@@ -369,3 +596,12 @@ static float Vector2DotProduct(Vector2 v1, Vector2 v2)
return result;
}
+
+static float Vector2Length(Vector2 v)
+{
+ float result;
+
+ result = sqrt(v.x*v.x + v.y*v.y);
+
+ return result;
+}
diff --git a/src/physac.h b/src/physac.h
index fc5502c4..852a7e4a 100644
--- a/src/physac.h
+++ b/src/physac.h
@@ -40,7 +40,7 @@ typedef struct Vector2 {
float y;
} Vector2;
-typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType;
+typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
typedef struct Transform {
Vector2 position;
@@ -56,7 +56,7 @@ typedef struct Rigidbody {
bool applyGravity;
bool isGrounded;
float friction; // Normalized value
- float bounciness; // Normalized value
+ float bounciness;
} Rigidbody;
typedef struct Collider {
@@ -81,13 +81,16 @@ extern "C" { // Prevents name mangling of functions
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
-void InitPhysics(); // Initializes pointers array (just pointers, fixed size)
+void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list
+void ApplyForce(PhysicObject *pObj, Vector2 force); // Apply directional force to a physic object
+void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
+
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position