aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/physac.h601
1 files changed, 296 insertions, 305 deletions
diff --git a/src/physac.h b/src/physac.h
index 6a90dc29..dd2b1628 100644
--- a/src/physac.h
+++ b/src/physac.h
@@ -146,7 +146,7 @@ typedef struct PhysicBodyData {
// Module Functions Declaration
//----------------------------------------------------------------------------------
PHYSACDEF void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
-PHYSACDEF void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
+PHYSACDEF void UpdatePhysics(double deltaTime); // Update physic objects, calculating physic behaviours and collisions detection
PHYSACDEF void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
@@ -182,7 +182,7 @@ PHYSACDEF Rectangle TransformToRectangle(Transform transform);
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_BODIES 256 // Maximum available physic bodies slots in bodies pool
-#define PHYSICS_STEPS 64 // Physics update steps per frame for improved collision-detection
+#define PHYSICS_TIMESTEP 0.016666 // Physics fixed time step (1/fps)
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
@@ -218,376 +218,367 @@ PHYSACDEF void InitPhysics(Vector2 gravity)
}
// Update physic objects, calculating physic behaviours and collisions detection
-PHYSACDEF void UpdatePhysics()
+PHYSACDEF void UpdatePhysics(double deltaTime)
{
- // Reset all physic objects is grounded state
- for (int i = 0; i < physicBodiesCount; i++) physicBodies[i]->rigidbody.isGrounded = false;
-
- for (int steps = 0; steps < PHYSICS_STEPS; steps++)
+ for (int i = 0; i < physicBodiesCount; i++)
{
- for (int i = 0; i < physicBodiesCount; i++)
+ if (physicBodies[i]->enabled)
{
- if (physicBodies[i]->enabled)
+ // Update physic behaviour
+ if (physicBodies[i]->rigidbody.enabled)
{
- // Update physic behaviour
- if (physicBodies[i]->rigidbody.enabled)
+ // Apply friction to acceleration in X axis
+ if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction*deltaTime;
+ else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction*deltaTime;
+ else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
+
+ // Apply friction to acceleration in Y axis
+ if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction*deltaTime;
+ else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction*deltaTime;
+ else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
+
+ // Apply friction to velocity in X axis
+ if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction*deltaTime;
+ else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction*deltaTime;
+ else physicBodies[i]->rigidbody.velocity.x = 0.0f;
+
+ // Apply friction to velocity in Y axis
+ if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction*deltaTime;
+ else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction*deltaTime;
+ else physicBodies[i]->rigidbody.velocity.y = 0.0f;
+
+ // Apply gravity to velocity
+ if (physicBodies[i]->rigidbody.applyGravity)
{
- // Apply friction to acceleration in X axis
- if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
-
- // Apply friction to acceleration in Y axis
- if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
-
- // Apply friction to velocity in X axis
- if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else physicBodies[i]->rigidbody.velocity.x = 0.0f;
-
- // Apply friction to velocity in Y axis
- if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
- else physicBodies[i]->rigidbody.velocity.y = 0.0f;
-
- // Apply gravity to velocity
- if (physicBodies[i]->rigidbody.applyGravity)
- {
- physicBodies[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
- physicBodies[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
- }
-
- // Apply acceleration to velocity
- physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
- physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
-
- // Apply velocity to position
- physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x/PHYSICS_STEPS;
- physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y/PHYSICS_STEPS;
+ physicBodies[i]->rigidbody.velocity.x += gravityForce.x*deltaTime;
+ physicBodies[i]->rigidbody.velocity.y += gravityForce.y*deltaTime;
}
- // Update collision detection
- if (physicBodies[i]->collider.enabled)
+ // Apply acceleration to velocity
+ physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x*deltaTime;
+ physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y*deltaTime;
+
+ // Apply velocity to position
+ physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x*deltaTime;
+ physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y*deltaTime;
+ }
+
+ // Update collision detection
+ if (physicBodies[i]->collider.enabled)
+ {
+ // Update collider bounds
+ physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
+
+ // Check collision with other colliders
+ for (int k = 0; k < physicBodiesCount; k++)
{
- // Update collider bounds
- physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
-
- // Check collision with other colliders
- for (int k = 0; k < physicBodiesCount; k++)
+ if (physicBodies[k]->collider.enabled && i != k)
{
- if (physicBodies[k]->collider.enabled && i != k)
+ // Resolve physic collision
+ // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
+ // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
+
+ // 1. Calculate collision normal
+ // -------------------------------------------------------------------------------------------------------------------------------------
+
+ // Define collision contact normal, direction and penetration depth
+ Vector2 contactNormal = { 0.0f, 0.0f };
+ Vector2 direction = { 0.0f, 0.0f };
+ float penetrationDepth = 0.0f;
+
+ switch (physicBodies[i]->collider.type)
{
- // Resolve physic collision
- // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
- // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
-
- // 1. Calculate collision normal
- // -------------------------------------------------------------------------------------------------------------------------------------
-
- // Define collision contact normal, direction and penetration depth
- Vector2 contactNormal = { 0.0f, 0.0f };
- Vector2 direction = { 0.0f, 0.0f };
- float penetrationDepth = 0.0f;
-
- switch (physicBodies[i]->collider.type)
+ case COLLIDER_RECTANGLE:
{
- case COLLIDER_RECTANGLE:
+ switch (physicBodies[k]->collider.type)
{
- switch (physicBodies[k]->collider.type)
+ case COLLIDER_RECTANGLE:
{
- case COLLIDER_RECTANGLE:
+ // Check if colliders are overlapped
+ if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
{
- // Check if colliders are overlapped
- if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
+ // Calculate direction vector from i to k
+ direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
+ direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
+
+ // Define overlapping and penetration attributes
+ Vector2 overlap;
+
+ // Calculate overlap on X axis
+ overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
+
+ // SAT test on X axis
+ if (overlap.x > 0.0f)
{
- // Calculate direction vector from i to k
- direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
- direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
-
- // Define overlapping and penetration attributes
- Vector2 overlap;
-
- // Calculate overlap on X axis
- overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
+ // Calculate overlap on Y axis
+ overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
- // SAT test on X axis
- if (overlap.x > 0.0f)
+ // SAT test on Y axis
+ if (overlap.y > 0.0f)
{
- // Calculate overlap on Y axis
- overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
-
- // SAT test on Y axis
- if (overlap.y > 0.0f)
+ // Find out which axis is axis of least penetration
+ if (overlap.y > overlap.x)
+ {
+ // Point towards k knowing that direction points from i to k
+ if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
+ else contactNormal = (Vector2){ 1.0f, 0.0f };
+
+ // Update penetration depth for position correction
+ penetrationDepth = overlap.x;
+ }
+ else
{
- // Find out which axis is axis of least penetration
- if (overlap.y > overlap.x)
- {
- // Point towards k knowing that direction points from i to k
- if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
- else contactNormal = (Vector2){ 1.0f, 0.0f };
-
- // Update penetration depth for position correction
- penetrationDepth = overlap.x;
- }
- else
- {
- // Point towards k knowing that direction points from i to k
- if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
- else contactNormal = (Vector2){ 0.0f, -1.0f };
-
- // Update penetration depth for position correction
- penetrationDepth = overlap.y;
- }
+ // Point towards k knowing that direction points from i to k
+ if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
+ else contactNormal = (Vector2){ 0.0f, -1.0f };
+
+ // Update penetration depth for position correction
+ penetrationDepth = overlap.y;
}
}
}
- } break;
- case COLLIDER_CIRCLE:
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
{
- if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
+ // Calculate direction vector between circles
+ direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
+ direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
+
+ // Calculate closest point on rectangle to circle
+ Vector2 closestPoint = { 0.0f, 0.0f };
+ if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
+ else closestPoint.x = physicBodies[i]->collider.bounds.x;
+
+ if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
+ else closestPoint.y = physicBodies[i]->collider.bounds.y;
+
+ // Check if the closest point is inside the circle
+ if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
- // Calculate direction vector between circles
- direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
- direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
-
- // Calculate closest point on rectangle to circle
- Vector2 closestPoint = { 0.0f, 0.0f };
- if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
- else closestPoint.x = physicBodies[i]->collider.bounds.x;
+ // Recalculate direction based on closest point position
+ direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
+ direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
+ float distance = Vector2Length(direction);
- if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
- else closestPoint.y = physicBodies[i]->collider.bounds.y;
+ // Calculate final contact normal
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
- // Check if the closest point is inside the circle
- if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
+ // Calculate penetration depth
+ penetrationDepth = physicBodies[k]->collider.radius - distance;
+ }
+ else
+ {
+ if (abs(direction.y) < abs(direction.x))
{
- // Recalculate direction based on closest point position
- direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
- direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
- float distance = Vector2Length(direction);
-
// Calculate final contact normal
- contactNormal.x = direction.x/distance;
- contactNormal.y = -direction.y/distance;
-
- // Calculate penetration depth
- penetrationDepth = physicBodies[k]->collider.radius - distance;
+ if (direction.y > 0.0f)
+ {
+ contactNormal = (Vector2){ 0.0f, -1.0f };
+ penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
+ }
+ else
+ {
+ contactNormal = (Vector2){ 0.0f, 1.0f };
+ penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
+ }
}
else
{
- if (abs(direction.y) < abs(direction.x))
+ // Calculate final contact normal
+ if (direction.x > 0.0f)
{
- // Calculate final contact normal
- if (direction.y > 0.0f)
- {
- contactNormal = (Vector2){ 0.0f, -1.0f };
- penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
- }
- else
- {
- contactNormal = (Vector2){ 0.0f, 1.0f };
- penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
- }
+ contactNormal = (Vector2){ 1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
}
- else
+ else
{
- // Calculate final contact normal
- if (direction.x > 0.0f)
- {
- contactNormal = (Vector2){ 1.0f, 0.0f };
- penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
- }
- else
- {
- contactNormal = (Vector2){ -1.0f, 0.0f };
- penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
- }
+ contactNormal = (Vector2){ -1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
}
}
}
- } break;
- }
- } break;
- case COLLIDER_CIRCLE:
+ }
+ } break;
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ switch (physicBodies[k]->collider.type)
{
- switch (physicBodies[k]->collider.type)
+ case COLLIDER_RECTANGLE:
{
- case COLLIDER_RECTANGLE:
+ if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
{
- if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
+ // Calculate direction vector between circles
+ direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
+ direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
+
+ // Calculate closest point on rectangle to circle
+ Vector2 closestPoint = { 0.0f, 0.0f };
+ if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
+ else closestPoint.x = physicBodies[k]->collider.bounds.x;
+
+ if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
+ else closestPoint.y = physicBodies[k]->collider.bounds.y;
+
+ // Check if the closest point is inside the circle
+ if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
{
- // Calculate direction vector between circles
- direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
- direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
-
- // Calculate closest point on rectangle to circle
- Vector2 closestPoint = { 0.0f, 0.0f };
- if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
- else closestPoint.x = physicBodies[k]->collider.bounds.x;
+ // Recalculate direction based on closest point position
+ direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
+ direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
+ float distance = Vector2Length(direction);
- if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
- else closestPoint.y = physicBodies[k]->collider.bounds.y;
+ // Calculate final contact normal
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
- // Check if the closest point is inside the circle
- if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
+ // Calculate penetration depth
+ penetrationDepth = physicBodies[k]->collider.radius - distance;
+ }
+ else
+ {
+ if (abs(direction.y) < abs(direction.x))
{
- // Recalculate direction based on closest point position
- direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
- direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
- float distance = Vector2Length(direction);
-
// Calculate final contact normal
- contactNormal.x = direction.x/distance;
- contactNormal.y = -direction.y/distance;
-
- // Calculate penetration depth
- penetrationDepth = physicBodies[k]->collider.radius - distance;
+ if (direction.y > 0.0f)
+ {
+ contactNormal = (Vector2){ 0.0f, -1.0f };
+ penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
+ }
+ else
+ {
+ contactNormal = (Vector2){ 0.0f, 1.0f };
+ penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
+ }
}
else
{
- if (abs(direction.y) < abs(direction.x))
+ // Calculate final contact normal and penetration depth
+ if (direction.x > 0.0f)
{
- // Calculate final contact normal
- if (direction.y > 0.0f)
- {
- contactNormal = (Vector2){ 0.0f, -1.0f };
- penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
- }
- else
- {
- contactNormal = (Vector2){ 0.0f, 1.0f };
- penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
- }
+ contactNormal = (Vector2){ 1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
}
- else
+ else
{
- // Calculate final contact normal and penetration depth
- if (direction.x > 0.0f)
- {
- contactNormal = (Vector2){ 1.0f, 0.0f };
- penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
- }
- else
- {
- contactNormal = (Vector2){ -1.0f, 0.0f };
- penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
- }
+ contactNormal = (Vector2){ -1.0f, 0.0f };
+ penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
}
}
}
- } break;
- case COLLIDER_CIRCLE:
+ }
+ } break;
+ case COLLIDER_CIRCLE:
+ {
+ // Check if colliders are overlapped
+ if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
- // Check if colliders are overlapped
- if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
- {
- // Calculate direction vector between circles
- direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
- direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
-
- // Calculate distance between circles
- float distance = Vector2Length(direction);
-
- // Check if circles are not completely overlapped
- if (distance != 0.0f)
- {
- // Calculate contact normal direction (Y axis needs to be flipped)
- contactNormal.x = direction.x/distance;
- contactNormal.y = -direction.y/distance;
- }
- else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
+ // Calculate direction vector between circles
+ direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
+ direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
+
+ // Calculate distance between circles
+ float distance = Vector2Length(direction);
+
+ // Check if circles are not completely overlapped
+ if (distance != 0.0f)
+ {
+ // Calculate contact normal direction (Y axis needs to be flipped)
+ contactNormal.x = direction.x/distance;
+ contactNormal.y = -direction.y/distance;
}
- } break;
- default: break;
- }
- } break;
- default: break;
- }
+ else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
+ }
+ } break;
+ default: break;
+ }
+ } break;
+ default: break;
+ }
+
+ // Update rigidbody grounded state
+ if (physicBodies[i]->rigidbody.enabled) physicBodies[i]->rigidbody.isGrounded = (contactNormal.y < 0.0f);
+
+ // 2. Calculate collision impulse
+ // -------------------------------------------------------------------------------------------------------------------------------------
+
+ // Calculate relative velocity
+ Vector2 relVelocity = { 0.0f, 0.0f };
+ relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
+ relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
+
+ // Calculate relative velocity in terms of the normal direction
+ float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
+
+ // Dot not resolve if velocities are separating
+ if (velAlongNormal <= 0.0f)
+ {
+ // Calculate minimum bounciness value from both objects
+ float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
- // Update rigidbody grounded state
- if (physicBodies[i]->rigidbody.enabled)
- {
- if (contactNormal.y < 0.0f) physicBodies[i]->rigidbody.isGrounded = true;
- }
+ // Calculate impulse scalar value
+ float j = -(1.0f + e)*velAlongNormal;
+ j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
- // 2. Calculate collision impulse
- // -------------------------------------------------------------------------------------------------------------------------------------
+ // Calculate final impulse vector
+ Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
- // Calculate relative velocity
- Vector2 relVelocity = { 0.0f, 0.0f };
- relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
- relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
-
- // Calculate relative velocity in terms of the normal direction
- float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
-
- // Dot not resolve if velocities are separating
- if (velAlongNormal <= 0.0f)
+ // Calculate collision mass ration
+ float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
+ float ratio = 0.0f;
+
+ // Apply impulse to current rigidbodies velocities if they are enabled
+ if (physicBodies[i]->rigidbody.enabled)
{
- // Calculate minimum bounciness value from both objects
- float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
-
- // Calculate impulse scalar value
- float j = -(1.0f + e)*velAlongNormal;
- j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
+ // Calculate inverted mass ration
+ ratio = physicBodies[i]->rigidbody.mass/massSum;
- // Calculate final impulse vector
- Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
+ // Apply impulse direction to velocity
+ physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ }
+
+ if (physicBodies[k]->rigidbody.enabled)
+ {
+ // Calculate inverted mass ration
+ ratio = physicBodies[k]->rigidbody.mass/massSum;
- // Calculate collision mass ration
- float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
- float ratio = 0.0f;
+ // Apply impulse direction to velocity
+ physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
+ }
+
+ // 3. Correct colliders overlaping (transform position)
+ // ---------------------------------------------------------------------------------------------------------------------------------
+
+ // Calculate transform position penetration correction
+ Vector2 posCorrection;
+ posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
+ posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
+
+ // Fix transform positions
+ if (physicBodies[i]->rigidbody.enabled)
+ {
+ // Fix physic objects transform position
+ physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
+ physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
- // Apply impulse to current rigidbodies velocities if they are enabled
- if (physicBodies[i]->rigidbody.enabled)
- {
- // Calculate inverted mass ration
- ratio = physicBodies[i]->rigidbody.mass/massSum;
-
- // Apply impulse direction to velocity
- physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
- physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
- }
+ // Update collider bounds
+ physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
- if (physicBodies[k]->rigidbody.enabled)
+ if (physicBodies[k]->rigidbody.enabled)
{
- // Calculate inverted mass ration
- ratio = physicBodies[k]->rigidbody.mass/massSum;
-
- // Apply impulse direction to velocity
- physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
- physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
- }
-
- // 3. Correct colliders overlaping (transform position)
- // ---------------------------------------------------------------------------------------------------------------------------------
-
- // Calculate transform position penetration correction
- Vector2 posCorrection;
- posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
- posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
-
- // Fix transform positions
- if (physicBodies[i]->rigidbody.enabled)
- {
// Fix physic objects transform position
- physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
- physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
+ physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
+ physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
- physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
-
- if (physicBodies[k]->rigidbody.enabled)
- {
- // Fix physic objects transform position
- physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
- physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
-
- // Update collider bounds
- physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
- }
+ physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
}
}
}