aboutsummaryrefslogtreecommitdiff
path: root/src/raymath.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/raymath.h')
-rw-r--r--src/raymath.h1093
1 files changed, 1041 insertions, 52 deletions
diff --git a/src/raymath.h b/src/raymath.h
index e140b74c..35cee39f 100644
--- a/src/raymath.h
+++ b/src/raymath.h
@@ -1,9 +1,23 @@
/**********************************************************************************************
*
-* raymath
+* raymath (header only file)
*
* Some useful functions to work with Vector3, Matrix and Quaternions
*
+* You must:
+* #define RAYMATH_IMPLEMENTATION
+* before you include this file in *only one* C or C++ file to create the implementation.
+*
+* Example:
+* #define RAYMATH_IMPLEMENTATION
+* #include "raymath.h"
+*
+* You can also use:
+* #define RAYMATH_EXTERN_INLINE // Inlines all functions code, so it runs faster.
+* // This requires lots of memory on system.
+* #define RAYMATH_STANDALONE // Not dependent on raylib.h structs: Vector3, Matrix.
+*
+*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
@@ -26,10 +40,17 @@
#ifndef RAYMATH_H
#define RAYMATH_H
-//#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line
+//#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line
+//#define RAYMATH_EXTERN_INLINE // NOTE: To compile functions as static inline, uncomment this line
#ifndef RAYMATH_STANDALONE
- #include "raylib.h" // Required for typedef: Vector3
+ #include "raylib.h" // Required for structs: Vector3, Matrix
+#endif
+
+#if defined(RAYMATH_EXTERN_INLINE)
+ #define RMDEF extern inline
+#else
+ #define RMDEF extern
#endif
//----------------------------------------------------------------------------------
@@ -39,14 +60,25 @@
#define PI 3.14159265358979323846
#endif
-#define DEG2RAD (PI / 180.0f)
-#define RAD2DEG (180.0f / PI)
+#ifndef DEG2RAD
+ #define DEG2RAD (PI/180.0f)
+#endif
+
+#ifndef RAD2DEG
+ #define RAD2DEG (180.0f/PI)
+#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
-#ifdef RAYMATH_STANDALONE
+#if defined(RAYMATH_STANDALONE)
+ // Vector2 type
+ typedef struct Vector2 {
+ float x;
+ float y;
+ } Vector2;
+
// Vector3 type
typedef struct Vector3 {
float x;
@@ -71,69 +103,1026 @@ typedef struct Quaternion {
float w;
} Quaternion;
+#ifndef RAYMATH_EXTERN_INLINE
#ifdef __cplusplus
-extern "C" { // Prevents name mangling of functions
+extern "C" {
#endif
//------------------------------------------------------------------------------------
// Functions Declaration to work with Vector3
//------------------------------------------------------------------------------------
-Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
-Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
-Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
-Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
-float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
-float VectorLength(const Vector3 v); // Calculate vector lenght
-void VectorScale(Vector3 *v, float scale); // Scale provided vector
-void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
-void VectorNormalize(Vector3 *v); // Normalize provided vector
-float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
-Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
-Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
-void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
-Vector3 VectorZero(void); // Return a Vector3 init to zero
+RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
+RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
+RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
+RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
+RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
+RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
+RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
+RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
+RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
+RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
+RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
+RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
+RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
+RMDEF Vector3 VectorZero(void); // Return a Vector3 init to zero
+RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
+RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
//------------------------------------------------------------------------------------
// Functions Declaration to work with Matrix
//------------------------------------------------------------------------------------
-float *GetMatrixVector(Matrix mat); // Returns an OpenGL-ready vector (glMultMatrixf)
-float MatrixDeterminant(Matrix mat); // Compute matrix determinant
-float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
-void MatrixTranspose(Matrix *mat); // Transposes provided matrix
-void MatrixInvert(Matrix *mat); // Invert provided matrix
-void MatrixNormalize(Matrix *mat); // Normalize provided matrix
-Matrix MatrixIdentity(void); // Returns identity matrix
-Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
-Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
-Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
-Matrix MatrixRotate(float angle, Vector3 axis); // Returns rotation matrix for an angle around an specified axis (angle in radians)
-Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
-Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
-Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
-Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
-Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
-Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix
-Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
-Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
-Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Returns camera look-at matrix (view matrix)
-void PrintMatrix(Matrix m); // Print matrix utility
+RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
+RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
+RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
+RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
+RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
+RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
+RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
+RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
+RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
+RMDEF Matrix MatrixRotate(Vector3 axis, float angle); // Returns rotation matrix for an angle around an specified axis (angle in radians)
+RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
+RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
+RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
+RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix
+RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
+RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
+RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Returns camera look-at matrix (view matrix)
+RMDEF void PrintMatrix(Matrix m); // Print matrix utility
//------------------------------------------------------------------------------------
// Functions Declaration to work with Quaternions
//------------------------------------------------------------------------------------
-float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
-void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
-Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
-Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
-Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
-Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion
-Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis); // Returns rotation quaternion for an angle and axis
-void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis); // Returns the rotation angle and axis for a given quaternion
-void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix
+RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
+RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
+RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
+RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
+RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
+RMDEF Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion
+RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle); // Returns rotation quaternion for an angle and axis
+RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle); // Returns the rotation angle and axis for a given quaternion
+RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix
#ifdef __cplusplus
}
#endif
-#endif // RAYMATH_H \ No newline at end of file
+#endif // notdef RAYMATH_EXTERN_INLINE
+
+#endif // RAYMATH_H
+//////////////////////////////////////////////////////////////////// end of header file
+
+#if defined(RAYMATH_IMPLEMENTATION) || defined(RAYMATH_EXTERN_INLINE)
+
+#include <stdio.h> // Used only on PrintMatrix()
+#include <math.h> // Standard math libary: sin(), cos(), tan()...
+#include <stdlib.h> // Used for abs()
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Vector3 math
+//----------------------------------------------------------------------------------
+
+// Add two vectors
+RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
+{
+ Vector3 result;
+
+ result.x = v1.x + v2.x;
+ result.y = v1.y + v2.y;
+ result.z = v1.z + v2.z;
+
+ return result;
+}
+
+// Substract two vectors
+RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
+{
+ Vector3 result;
+
+ result.x = v1.x - v2.x;
+ result.y = v1.y - v2.y;
+ result.z = v1.z - v2.z;
+
+ return result;
+}
+
+// Calculate two vectors cross product
+RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2)
+{
+ Vector3 result;
+
+ result.x = v1.y*v2.z - v1.z*v2.y;
+ result.y = v1.z*v2.x - v1.x*v2.z;
+ result.z = v1.x*v2.y - v1.y*v2.x;
+
+ return result;
+}
+
+// Calculate one vector perpendicular vector
+RMDEF Vector3 VectorPerpendicular(Vector3 v)
+{
+ Vector3 result;
+
+ float min = fabs(v.x);
+ Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
+
+ if (fabs(v.y) < min)
+ {
+ min = fabs(v.y);
+ cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f};
+ }
+
+ if(fabs(v.z) < min)
+ {
+ cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
+ }
+
+ result = VectorCrossProduct(v, cardinalAxis);
+
+ return result;
+}
+
+// Calculate two vectors dot product
+RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2)
+{
+ float result;
+
+ result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
+
+ return result;
+}
+
+// Calculate vector lenght
+RMDEF float VectorLength(const Vector3 v)
+{
+ float length;
+
+ length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
+
+ return length;
+}
+
+// Scale provided vector
+RMDEF void VectorScale(Vector3 *v, float scale)
+{
+ v->x *= scale;
+ v->y *= scale;
+ v->z *= scale;
+}
+
+// Negate provided vector (invert direction)
+RMDEF void VectorNegate(Vector3 *v)
+{
+ v->x = -v->x;
+ v->y = -v->y;
+ v->z = -v->z;
+}
+
+// Normalize provided vector
+RMDEF void VectorNormalize(Vector3 *v)
+{
+ float length, ilength;
+
+ length = VectorLength(*v);
+
+ if (length == 0) length = 1.0f;
+
+ ilength = 1.0f/length;
+
+ v->x *= ilength;
+ v->y *= ilength;
+ v->z *= ilength;
+}
+
+// Calculate distance between two points
+RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
+{
+ float result;
+
+ float dx = v2.x - v1.x;
+ float dy = v2.y - v1.y;
+ float dz = v2.z - v1.z;
+
+ result = sqrt(dx*dx + dy*dy + dz*dz);
+
+ return result;
+}
+
+// Calculate linear interpolation between two vectors
+RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
+{
+ Vector3 result;
+
+ result.x = v1.x + amount*(v2.x - v1.x);
+ result.y = v1.y + amount*(v2.y - v1.y);
+ result.z = v1.z + amount*(v2.z - v1.z);
+
+ return result;
+}
+
+// Calculate reflected vector to normal
+RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
+{
+ // I is the original vector
+ // N is the normal of the incident plane
+ // R = I - (2*N*( DotProduct[ I,N] ))
+
+ Vector3 result;
+
+ float dotProduct = VectorDotProduct(vector, normal);
+
+ result.x = vector.x - (2.0f*normal.x)*dotProduct;
+ result.y = vector.y - (2.0f*normal.y)*dotProduct;
+ result.z = vector.z - (2.0f*normal.z)*dotProduct;
+
+ return result;
+}
+
+// Transforms a Vector3 with a given Matrix
+RMDEF void VectorTransform(Vector3 *v, Matrix mat)
+{
+ float x = v->x;
+ float y = v->y;
+ float z = v->z;
+
+ //MatrixTranspose(&mat);
+
+ v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
+ v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
+ v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
+};
+
+// Return a Vector3 init to zero
+RMDEF Vector3 VectorZero(void)
+{
+ Vector3 zero = { 0.0f, 0.0f, 0.0f };
+
+ return zero;
+}
+
+// Return min value for each pair of components
+RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2)
+{
+ Vector3 result;
+
+ result.x = fminf(vec1.x, vec2.x);
+ result.y = fminf(vec1.y, vec2.y);
+ result.z = fminf(vec1.z, vec2.z);
+
+ return result;
+}
+
+// Return max value for each pair of components
+RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2)
+{
+ Vector3 result;
+
+ result.x = fmaxf(vec1.x, vec2.x);
+ result.y = fmaxf(vec1.y, vec2.y);
+ result.z = fmaxf(vec1.z, vec2.z);
+
+ return result;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Matrix math
+//----------------------------------------------------------------------------------
+
+// Compute matrix determinant
+RMDEF float MatrixDeterminant(Matrix mat)
+{
+ float result;
+
+ // Cache the matrix values (speed optimization)
+ float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+ float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+ float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+ float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
+
+ result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
+ a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
+ a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
+ a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
+ a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
+ a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
+
+ return result;
+}
+
+// Returns the trace of the matrix (sum of the values along the diagonal)
+RMDEF float MatrixTrace(Matrix mat)
+{
+ return (mat.m0 + mat.m5 + mat.m10 + mat.m15);
+}
+
+// Transposes provided matrix
+RMDEF void MatrixTranspose(Matrix *mat)
+{
+ Matrix temp;
+
+ temp.m0 = mat->m0;
+ temp.m1 = mat->m4;
+ temp.m2 = mat->m8;
+ temp.m3 = mat->m12;
+ temp.m4 = mat->m1;
+ temp.m5 = mat->m5;
+ temp.m6 = mat->m9;
+ temp.m7 = mat->m13;
+ temp.m8 = mat->m2;
+ temp.m9 = mat->m6;
+ temp.m10 = mat->m10;
+ temp.m11 = mat->m14;
+ temp.m12 = mat->m3;
+ temp.m13 = mat->m7;
+ temp.m14 = mat->m11;
+ temp.m15 = mat->m15;
+
+ *mat = temp;
+}
+
+// Invert provided matrix
+RMDEF void MatrixInvert(Matrix *mat)
+{
+ Matrix temp;
+
+ // Cache the matrix values (speed optimization)
+ float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3;
+ float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7;
+ float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11;
+ float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15;
+
+ float b00 = a00*a11 - a01*a10;
+ float b01 = a00*a12 - a02*a10;
+ float b02 = a00*a13 - a03*a10;
+ float b03 = a01*a12 - a02*a11;
+ float b04 = a01*a13 - a03*a11;
+ float b05 = a02*a13 - a03*a12;
+ float b06 = a20*a31 - a21*a30;
+ float b07 = a20*a32 - a22*a30;
+ float b08 = a20*a33 - a23*a30;
+ float b09 = a21*a32 - a22*a31;
+ float b10 = a21*a33 - a23*a31;
+ float b11 = a22*a33 - a23*a32;
+
+ // Calculate the invert determinant (inlined to avoid double-caching)
+ float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
+
+ temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
+ temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
+ temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
+ temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
+ temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
+ temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
+ temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
+ temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
+ temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
+ temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
+ temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
+ temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
+ temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
+ temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
+ temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
+ temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
+
+ *mat = temp;
+}
+
+// Normalize provided matrix
+RMDEF void MatrixNormalize(Matrix *mat)
+{
+ float det = MatrixDeterminant(*mat);
+
+ mat->m0 /= det;
+ mat->m1 /= det;
+ mat->m2 /= det;
+ mat->m3 /= det;
+ mat->m4 /= det;
+ mat->m5 /= det;
+ mat->m6 /= det;
+ mat->m7 /= det;
+ mat->m8 /= det;
+ mat->m9 /= det;
+ mat->m10 /= det;
+ mat->m11 /= det;
+ mat->m12 /= det;
+ mat->m13 /= det;
+ mat->m14 /= det;
+ mat->m15 /= det;
+}
+
+// Returns identity matrix
+RMDEF Matrix MatrixIdentity(void)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return result;
+}
+
+// Add two matrices
+RMDEF Matrix MatrixAdd(Matrix left, Matrix right)
+{
+ Matrix result = MatrixIdentity();
+
+ result.m0 = left.m0 + right.m0;
+ result.m1 = left.m1 + right.m1;
+ result.m2 = left.m2 + right.m2;
+ result.m3 = left.m3 + right.m3;
+ result.m4 = left.m4 + right.m4;
+ result.m5 = left.m5 + right.m5;
+ result.m6 = left.m6 + right.m6;
+ result.m7 = left.m7 + right.m7;
+ result.m8 = left.m8 + right.m8;
+ result.m9 = left.m9 + right.m9;
+ result.m10 = left.m10 + right.m10;
+ result.m11 = left.m11 + right.m11;
+ result.m12 = left.m12 + right.m12;
+ result.m13 = left.m13 + right.m13;
+ result.m14 = left.m14 + right.m14;
+ result.m15 = left.m15 + right.m15;
+
+ return result;
+}
+
+// Substract two matrices (left - right)
+RMDEF Matrix MatrixSubstract(Matrix left, Matrix right)
+{
+ Matrix result = MatrixIdentity();
+
+ result.m0 = left.m0 - right.m0;
+ result.m1 = left.m1 - right.m1;
+ result.m2 = left.m2 - right.m2;
+ result.m3 = left.m3 - right.m3;
+ result.m4 = left.m4 - right.m4;
+ result.m5 = left.m5 - right.m5;
+ result.m6 = left.m6 - right.m6;
+ result.m7 = left.m7 - right.m7;
+ result.m8 = left.m8 - right.m8;
+ result.m9 = left.m9 - right.m9;
+ result.m10 = left.m10 - right.m10;
+ result.m11 = left.m11 - right.m11;
+ result.m12 = left.m12 - right.m12;
+ result.m13 = left.m13 - right.m13;
+ result.m14 = left.m14 - right.m14;
+ result.m15 = left.m15 - right.m15;
+
+ return result;
+}
+
+// Returns translation matrix
+RMDEF Matrix MatrixTranslate(float x, float y, float z)
+{
+ Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 1.0f, 0.0f,
+ x, y, z, 1.0f };
+
+ return result;
+}
+
+// Create rotation matrix from axis and angle
+// NOTE: Angle should be provided in radians
+RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
+{
+ Matrix result;
+
+ Matrix mat = MatrixIdentity();
+
+ float x = axis.x, y = axis.y, z = axis.z;
+
+ float length = sqrt(x*x + y*y + z*z);
+
+ if ((length != 1.0f) && (length != 0.0f))
+ {
+ length = 1.0f/length;
+ x *= length;
+ y *= length;
+ z *= length;
+ }
+
+ float sinres = sinf(angle);
+ float cosres = cosf(angle);
+ float t = 1.0f - cosres;
+
+ // Cache some matrix values (speed optimization)
+ float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
+ float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
+ float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
+
+ // Construct the elements of the rotation matrix
+ float b00 = x*x*t + cosres, b01 = y*x*t + z*sinres, b02 = z*x*t - y*sinres;
+ float b10 = x*y*t - z*sinres, b11 = y*y*t + cosres, b12 = z*y*t + x*sinres;
+ float b20 = x*z*t + y*sinres, b21 = y*z*t - x*sinres, b22 = z*z*t + cosres;
+
+ // Perform rotation-specific matrix multiplication
+ result.m0 = a00*b00 + a10*b01 + a20*b02;
+ result.m1 = a01*b00 + a11*b01 + a21*b02;
+ result.m2 = a02*b00 + a12*b01 + a22*b02;
+ result.m3 = a03*b00 + a13*b01 + a23*b02;
+ result.m4 = a00*b10 + a10*b11 + a20*b12;
+ result.m5 = a01*b10 + a11*b11 + a21*b12;
+ result.m6 = a02*b10 + a12*b11 + a22*b12;
+ result.m7 = a03*b10 + a13*b11 + a23*b12;
+ result.m8 = a00*b20 + a10*b21 + a20*b22;
+ result.m9 = a01*b20 + a11*b21 + a21*b22;
+ result.m10 = a02*b20 + a12*b21 + a22*b22;
+ result.m11 = a03*b20 + a13*b21 + a23*b22;
+ result.m12 = mat.m12;
+ result.m13 = mat.m13;
+ result.m14 = mat.m14;
+ result.m15 = mat.m15;
+
+ return result;
+}
+
+/*
+// Another implementation for MatrixRotate...
+RMDEF Matrix MatrixRotate(float angle, float x, float y, float z)
+{
+ Matrix result = MatrixIdentity();
+
+ float c = cosf(angle); // cosine
+ float s = sinf(angle); // sine
+ float c1 = 1.0f - c; // 1 - c
+
+ float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12,
+ m1 = result.m1, m5 = result.m5, m9 = result.m9, m13 = result.m13,
+ m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
+
+ // build rotation matrix
+ float r0 = x*x*c1 + c;
+ float r1 = x*y*c1 + z*s;
+ float r2 = x*z*c1 - y*s;
+ float r4 = x*y*c1 - z*s;
+ float r5 = y*y*c1 + c;
+ float r6 = y*z*c1 + x*s;
+ float r8 = x*z*c1 + y*s;
+ float r9 = y*z*c1 - x*s;
+ float r10= z*z*c1 + c;
+
+ // multiply rotation matrix
+ result.m0 = r0*m0 + r4*m1 + r8*m2;
+ result.m1 = r1*m0 + r5*m1 + r9*m2;
+ result.m2 = r2*m0 + r6*m1 + r10*m2;
+ result.m4 = r0*m4 + r4*m5 + r8*m6;
+ result.m5 = r1*m4 + r5*m5 + r9*m6;
+ result.m6 = r2*m4 + r6*m5 + r10*m6;
+ result.m8 = r0*m8 + r4*m9 + r8*m10;
+ result.m9 = r1*m8 + r5*m9 + r9*m10;
+ result.m10 = r2*m8 + r6*m9 + r10*m10;
+ result.m12 = r0*m12+ r4*m13 + r8*m14;
+ result.m13 = r1*m12+ r5*m13 + r9*m14;
+ result.m14 = r2*m12+ r6*m13 + r10*m14;
+
+ return result;
+}
+*/
+
+// Returns x-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateX(float angle)
+{
+ Matrix result = MatrixIdentity();
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.m5 = cosres;
+ result.m6 = -sinres;
+ result.m9 = sinres;
+ result.m10 = cosres;
+
+ return result;
+}
+
+// Returns y-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateY(float angle)
+{
+ Matrix result = MatrixIdentity();
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.m0 = cosres;
+ result.m2 = sinres;
+ result.m8 = -sinres;
+ result.m10 = cosres;
+
+ return result;
+}
+
+// Returns z-rotation matrix (angle in radians)
+RMDEF Matrix MatrixRotateZ(float angle)
+{
+ Matrix result = MatrixIdentity();
+
+ float cosres = cosf(angle);
+ float sinres = sinf(angle);
+
+ result.m0 = cosres;
+ result.m1 = -sinres;
+ result.m4 = sinres;
+ result.m5 = cosres;
+
+ return result;
+}
+
+// Returns scaling matrix
+RMDEF Matrix MatrixScale(float x, float y, float z)
+{
+ Matrix result = { x, 0.0f, 0.0f, 0.0f,
+ 0.0f, y, 0.0f, 0.0f,
+ 0.0f, 0.0f, z, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f };
+
+ return result;
+}
+
+// Returns two matrix multiplication
+// NOTE: When multiplying matrices... the order matters!
+RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
+{
+ Matrix result;
+
+ result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12;
+ result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13;
+ result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14;
+ result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15;
+ result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12;
+ result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13;
+ result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14;
+ result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15;
+ result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12;
+ result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13;
+ result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14;
+ result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15;
+ result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12;
+ result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13;
+ result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14;
+ result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15;
+
+ return result;
+}
+
+// Returns perspective projection matrix
+RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
+{
+ Matrix result;
+
+ float rl = (right - left);
+ float tb = (top - bottom);
+ float fn = (far - near);
+
+ result.m0 = (near*2.0f)/rl;
+ result.m1 = 0.0f;
+ result.m2 = 0.0f;
+ result.m3 = 0.0f;
+
+ result.m4 = 0.0f;
+ result.m5 = (near*2.0f)/tb;
+ result.m6 = 0.0f;
+ result.m7 = 0.0f;
+
+ result.m8 = (right + left)/rl;
+ result.m9 = (top + bottom)/tb;
+ result.m10 = -(far + near)/fn;
+ result.m11 = -1.0f;
+
+ result.m12 = 0.0f;
+ result.m13 = 0.0f;
+ result.m14 = -(far*near*2.0f)/fn;
+ result.m15 = 0.0f;
+
+ return result;
+}
+
+// Returns perspective projection matrix
+RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
+{
+ double top = near*tanf(fovy*PI/360.0f);
+ double right = top*aspect;
+
+ return MatrixFrustum(-right, right, -top, top, near, far);
+}
+
+// Returns orthographic projection matrix
+RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
+{
+ Matrix result;
+
+ float rl = (right - left);
+ float tb = (top - bottom);
+ float fn = (far - near);
+
+ result.m0 = 2.0f/rl;
+ result.m1 = 0.0f;
+ result.m2 = 0.0f;
+ result.m3 = 0.0f;
+ result.m4 = 0.0f;
+ result.m5 = 2.0f/tb;
+ result.m6 = 0.0f;
+ result.m7 = 0.0f;
+ result.m8 = 0.0f;
+ result.m9 = 0.0f;
+ result.m10 = -2.0f/fn;
+ result.m11 = 0.0f;
+ result.m12 = -(left + right)/rl;
+ result.m13 = -(top + bottom)/tb;
+ result.m14 = -(far + near)/fn;
+ result.m15 = 1.0f;
+
+ return result;
+}
+
+// Returns camera look-at matrix (view matrix)
+RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
+{
+ Matrix result;
+
+ Vector3 z = VectorSubtract(eye, target);
+ VectorNormalize(&z);
+ Vector3 x = VectorCrossProduct(up, z);
+ VectorNormalize(&x);
+ Vector3 y = VectorCrossProduct(z, x);
+ VectorNormalize(&y);
+
+ result.m0 = x.x;
+ result.m1 = x.y;
+ result.m2 = x.z;
+ result.m3 = -((x.x*eye.x) + (x.y*eye.y) + (x.z*eye.z));
+ result.m4 = y.x;
+ result.m5 = y.y;
+ result.m6 = y.z;
+ result.m7 = -((y.x*eye.x) + (y.y*eye.y) + (y.z*eye.z));
+ result.m8 = z.x;
+ result.m9 = z.y;
+ result.m10 = z.z;
+ result.m11 = -((z.x*eye.x) + (z.y*eye.y) + (z.z*eye.z));
+ result.m12 = 0.0f;
+ result.m13 = 0.0f;
+ result.m14 = 0.0f;
+ result.m15 = 1.0f;
+
+ return result;
+}
+
+// Print matrix utility (for debug)
+RMDEF void PrintMatrix(Matrix m)
+{
+ printf("----------------------\n");
+ printf("%2.2f %2.2f %2.2f %2.2f\n", m.m0, m.m4, m.m8, m.m12);
+ printf("%2.2f %2.2f %2.2f %2.2f\n", m.m1, m.m5, m.m9, m.m13);
+ printf("%2.2f %2.2f %2.2f %2.2f\n", m.m2, m.m6, m.m10, m.m14);
+ printf("%2.2f %2.2f %2.2f %2.2f\n", m.m3, m.m7, m.m11, m.m15);
+ printf("----------------------\n");
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Quaternion math
+//----------------------------------------------------------------------------------
+
+// Computes the length of a quaternion
+RMDEF float QuaternionLength(Quaternion quat)
+{
+ return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w);
+}
+
+// Normalize provided quaternion
+RMDEF void QuaternionNormalize(Quaternion *q)
+{
+ float length, ilength;
+
+ length = QuaternionLength(*q);
+
+ if (length == 0.0f) length = 1.0f;
+
+ ilength = 1.0f/length;
+
+ q->x *= ilength;
+ q->y *= ilength;
+ q->z *= ilength;
+ q->w *= ilength;
+}
+
+// Calculate two quaternion multiplication
+RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
+{
+ Quaternion result;
+
+ float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
+ float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
+
+ result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
+ result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
+ result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
+ result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
+
+ return result;
+}
+
+// Calculates spherical linear interpolation between two quaternions
+RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
+{
+ Quaternion result;
+
+ float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
+
+ if (fabs(cosHalfTheta) >= 1.0f) result = q1;
+ else
+ {
+ float halfTheta = acos(cosHalfTheta);
+ float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta);
+
+ if (fabs(sinHalfTheta) < 0.001f)
+ {
+ result.x = (q1.x*0.5f + q2.x*0.5f);
+ result.y = (q1.y*0.5f + q2.y*0.5f);
+ result.z = (q1.z*0.5f + q2.z*0.5f);
+ result.w = (q1.w*0.5f + q2.w*0.5f);
+ }
+ else
+ {
+ float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
+ float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
+
+ result.x = (q1.x*ratioA + q2.x*ratioB);
+ result.y = (q1.y*ratioA + q2.y*ratioB);
+ result.z = (q1.z*ratioA + q2.z*ratioB);
+ result.w = (q1.w*ratioA + q2.w*ratioB);
+ }
+ }
+
+ return result;
+}
+
+// Returns a quaternion for a given rotation matrix
+RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
+{
+ Quaternion result;
+
+ float trace = MatrixTrace(matrix);
+
+ if (trace > 0.0f)
+ {
+ float s = (float)sqrt(trace + 1)*2.0f;
+ float invS = 1.0f/s;
+
+ result.w = s*0.25f;
+ result.x = (matrix.m6 - matrix.m9)*invS;
+ result.y = (matrix.m8 - matrix.m2)*invS;
+ result.z = (matrix.m1 - matrix.m4)*invS;
+ }
+ else
+ {
+ float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10;
+
+ if (m00 > m11 && m00 > m22)
+ {
+ float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
+ float invS = 1.0f/s;
+
+ result.w = (matrix.m6 - matrix.m9)*invS;
+ result.x = s*0.25f;
+ result.y = (matrix.m4 + matrix.m1)*invS;
+ result.z = (matrix.m8 + matrix.m2)*invS;
+ }
+ else if (m11 > m22)
+ {
+ float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f;
+ float invS = 1.0f/s;
+
+ result.w = (matrix.m8 - matrix.m2)*invS;
+ result.x = (matrix.m4 + matrix.m1)*invS;
+ result.y = s*0.25f;
+ result.z = (matrix.m9 + matrix.m6)*invS;
+ }
+ else
+ {
+ float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f;
+ float invS = 1.0f/s;
+
+ result.w = (matrix.m1 - matrix.m4)*invS;
+ result.x = (matrix.m8 + matrix.m2)*invS;
+ result.y = (matrix.m9 + matrix.m6)*invS;
+ result.z = s*0.25f;
+ }
+ }
+
+ return result;
+}
+
+// Returns a matrix for a given quaternion
+RMDEF Matrix QuaternionToMatrix(Quaternion q)
+{
+ Matrix result;
+
+ float x = q.x, y = q.y, z = q.z, w = q.w;
+
+ float x2 = x + x;
+ float y2 = y + y;
+ float z2 = z + z;
+
+ float xx = x*x2;
+ float xy = x*y2;
+ float xz = x*z2;
+
+ float yy = y*y2;
+ float yz = y*z2;
+ float zz = z*z2;
+
+ float wx = w*x2;
+ float wy = w*y2;
+ float wz = w*z2;
+
+ result.m0 = 1.0f - (yy + zz);
+ result.m1 = xy - wz;
+ result.m2 = xz + wy;
+ result.m3 = 0.0f;
+ result.m4 = xy + wz;
+ result.m5 = 1.0f - (xx + zz);
+ result.m6 = yz - wx;
+ result.m7 = 0.0f;
+ result.m8 = xz - wy;
+ result.m9 = yz + wx;
+ result.m10 = 1.0f - (xx + yy);
+ result.m11 = 0.0f;
+ result.m12 = 0.0f;
+ result.m13 = 0.0f;
+ result.m14 = 0.0f;
+ result.m15 = 1.0f;
+
+ return result;
+}
+
+// Returns rotation quaternion for an angle and axis
+// NOTE: angle must be provided in radians
+RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
+{
+ Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
+
+ if (VectorLength(axis) != 0.0f)
+
+ angle *= 0.5f;
+
+ VectorNormalize(&axis);
+
+ float sinres = sinf(angle);
+ float cosres = cosf(angle);
+
+ result.x = axis.x*sinres;
+ result.y = axis.y*sinres;
+ result.z = axis.z*sinres;
+ result.w = cosres;
+
+ QuaternionNormalize(&result);
+
+ return result;
+}
+
+// Returns the rotation angle and axis for a given quaternion
+RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
+{
+ if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);
+
+ Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
+ float resAngle = 0.0f;
+
+ resAngle = 2.0f*(float)acos(q.w);
+ float den = (float)sqrt(1.0f - q.w*q.w);
+
+ if (den > 0.0001f)
+ {
+ resAxis.x = q.x/den;
+ resAxis.y = q.y/den;
+ resAxis.z = q.z/den;
+ }
+ else
+ {
+ // This occurs when the angle is zero.
+ // Not a problem: just set an arbitrary normalized axis.
+ resAxis.x = 1.0f;
+ }
+
+ *outAxis = resAxis;
+ *outAngle = resAngle;
+}
+
+// Transform a quaternion given a transformation matrix
+RMDEF void QuaternionTransform(Quaternion *q, Matrix mat)
+{
+ float x = q->x;
+ float y = q->y;
+ float z = q->z;
+ float w = q->w;
+
+ q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w;
+ q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w;
+ q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w;
+ q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
+}
+
+#endif // RAYMATH_IMPLEMENTATION