aboutsummaryrefslogtreecommitdiff
path: root/shaders/glsl100/standard.fs
blob: 3e78022dc1085222fc4b65b5502647e36efc12d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#version 100

precision mediump float;

varying vec3 fragPosition;
varying vec2 fragTexCoord;
varying vec4 fragColor;
varying vec3 fragNormal;

uniform sampler2D texture0;
uniform sampler2D texture1;
uniform sampler2D texture2;

uniform vec4 colAmbient;
uniform vec4 colDiffuse;
uniform vec4 colSpecular;
uniform float glossiness;

uniform int useNormal;
uniform int useSpecular;

uniform mat4 modelMatrix;
uniform vec3 viewDir;

struct Light {
    int enabled;
    int type;
    vec3 position;
    vec3 direction;
    vec4 diffuse;
    float intensity;
    float radius;
    float coneAngle;
};

const int maxLights = 8;
uniform Light lights[maxLights];

vec3 CalcPointLight(Light l, vec3 n, vec3 v, float s)
{
    vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
    vec3 surfaceToLight = l.position - surfacePos;
    
    // Diffuse shading
    float brightness = clamp(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n)), 0, 1);
    float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;
    
    // Specular shading
    float spec = 0.0;
    if (diff > 0.0)
    {
        vec3 h = normalize(-l.direction + v);
        spec = pow(dot(n, h), 3 + glossiness)*s;
    }
    
    return (diff*l.diffuse.rgb + spec*colSpecular.rgb);
}

vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v, float s)
{
    vec3 lightDir = normalize(-l.direction);
    
    // Diffuse shading
    float diff = clamp(dot(n, lightDir), 0.0, 1.0)*l.intensity;
    
    // Specular shading
    float spec = 0.0;
    if (diff > 0.0)
    {
        vec3 h = normalize(lightDir + v);
        spec = pow(dot(n, h), 3 + glossiness)*s;
    }
    
    // Combine results
    return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb);
}

vec3 CalcSpotLight(Light l, vec3 n, vec3 v, float s)
{
    vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
    vec3 lightToSurface = normalize(surfacePos - l.position);
    vec3 lightDir = normalize(-l.direction);
    
    // Diffuse shading
    float diff = clamp(dot(n, lightDir), 0.0, 1.0)*l.intensity;
    
    // Spot attenuation
    float attenuation = clamp(dot(n, lightToSurface), 0.0, 1.0);
    attenuation = dot(lightToSurface, -lightDir);
    
    float lightToSurfaceAngle = degrees(acos(attenuation));
    if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;
    
    float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;
    
    // Combine diffuse and attenuation
    float diffAttenuation = diff*attenuation;
    
    // Specular shading
    float spec = 0.0;
    if (diffAttenuation > 0.0)
    {
        vec3 h = normalize(lightDir + v);
        spec = pow(dot(n, h), 3 + glossiness)*s;
    }
    
    return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb));
}

void main()
{
    // Calculate fragment normal in screen space
    // NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale)
    mat3 normalMatrix = transpose(inverse(mat3(modelMatrix)));
    vec3 normal = normalize(normalMatrix*fragNormal);

    // Normalize normal and view direction vectors
    vec3 n = normalize(normal);
    vec3 v = normalize(viewDir);

    // Calculate diffuse texture color fetching
    vec4 texelColor = texture2D(texture0, fragTexCoord);
    vec3 lighting = colAmbient.rgb;
    
    // Calculate normal texture color fetching or set to maximum normal value by default
    if (useNormal == 1)
    {
        n *= texture2D(texture1, fragTexCoord).rgb;
        n = normalize(n);
    }
    
    // Calculate specular texture color fetching or set to maximum specular value by default
    float spec = 1.0;
    if (useSpecular == 1) spec *= normalize(texture2D(texture2, fragTexCoord).r);
    
    for (int i = 0; i < maxLights; i++)
    {
        // Check if light is enabled
        if (lights[i].enabled == 1)
        {
            // Calculate lighting based on light type
            if(lights[i].type == 0) lighting += CalcPointLight(lights[i], n, v, spec);
            else if(lights[i].type == 1) lighting += CalcDirectionalLight(lights[i], n, v, spec);
            else if(lights[i].type == 2) lighting += CalcSpotLight(lights[i], n, v, spec);
        }
    }
    
    // Calculate final fragment color
    gl_FragColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a);
}