1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
|
/**********************************************************************************************
*
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
*
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
//#define PHYSAC_STANDALONE // NOTE: To use the physics module as standalone lib, just uncomment this line
#if defined(PHYSAC_STANDALONE)
#include "physac.h"
#else
#include "raylib.h"
#endif
#include <stdlib.h> // Declares malloc() and free() for memory management
#include <math.h> // Declares cos(), sin(), abs() and fminf() for math operations
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_OBJECTS 256 // Maximum available physic object slots in objects pool
#define PHYSICS_STEPS 450 // Physics update steps number (divided calculations in steps per frame) to get more accurately collisions detections
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static PhysicObject physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
static int physicObjectsCount; // Counts current enabled physic objects
static Vector2 gravityForce; // Gravity force
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes pointers array (just pointers, fixed size)
void InitPhysics(Vector2 gravity)
{
// Initialize physics variables
physicObjectsCount = 0;
gravityForce = gravity;
}
// Update physic objects, calculating physic behaviours and collisions detection
void UpdatePhysics()
{
// Reset all physic objects is grounded state
for (int i = 0; i < physicObjectsCount; i++) physicObjects[i]->rigidbody.isGrounded = false;
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
{
for (int i = 0; i < physicObjectsCount; i++)
{
if (physicObjects[i]->enabled)
{
// Update physic behaviour
if (physicObjects[i]->rigidbody.enabled)
{
// Apply friction to acceleration in X axis
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity
if (physicObjects[i]->rigidbody.applyGravity)
{
physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
}
// Apply acceleration to velocity
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
// Apply velocity to position
physicObjects[i]->transform.position.x += physicObjects[i]->rigidbody.velocity.x/PHYSICS_STEPS;
physicObjects[i]->transform.position.y -= physicObjects[i]->rigidbody.velocity.y/PHYSICS_STEPS;
}
// Update collision detection
if (physicObjects[i]->collider.enabled)
{
// Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicObjectsCount; k++)
{
if (physicObjects[k]->collider.enabled && i != k)
{
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch (physicObjects[i]->collider.type)
{
case COLLIDER_RECTANGLE:
{
switch (physicObjects[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
// Check if colliders are overlapped
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
{
// Calculate direction vector from i to k
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
else closestPoint.x = physicObjects[i]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
else closestPoint.y = physicObjects[i]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicObjects[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
}
}
else
{
// Calculate final contact normal
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
}
}
}
}
} break;
}
} break;
case COLLIDER_CIRCLE:
{
switch (physicObjects[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
else closestPoint.x = physicObjects[k]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
else closestPoint.y = physicObjects[k]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicObjects[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
}
}
else
{
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
}
} break;
default: break;
}
} break;
default: break;
}
// Update rigidbody grounded state
if (physicObjects[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
}
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicObjects[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[i]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
if (physicObjects[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[k]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicObjects[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
if (physicObjects[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
}
}
}
}
}
}
}
}
}
}
// Unitialize all physic objects and empty the objects pool
void ClosePhysics()
{
// Free all dynamic memory allocations
for (int i = 0; i < physicObjectsCount; i++) free(physicObjects[i]);
// Reset enabled physic objects count
physicObjectsCount = 0;
}
// Create a new physic object dinamically, initialize it and add to pool
PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale)
{
// Allocate dynamic memory
PhysicObject obj = (PhysicObject)malloc(sizeof(PhysicObjectData));
// Initialize physic object values with generic values
obj->id = physicObjectsCount;
obj->enabled = true;
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
obj->rigidbody.enabled = false;
obj->rigidbody.mass = 1.0f;
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.applyGravity = false;
obj->rigidbody.isGrounded = false;
obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f;
obj->collider.enabled = true;
obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f;
// Add new physic object to the pointers array
physicObjects[physicObjectsCount] = obj;
// Increase enabled physic objects count
physicObjectsCount++;
return obj;
}
// Destroy a specific physic object and take it out of the list
void DestroyPhysicObject(PhysicObject pObj)
{
// Free dynamic memory allocation
free(physicObjects[pObj->id]);
// Remove *obj from the pointers array
for (int i = pObj->id; i < physicObjectsCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < physicObjectsCount)
{
physicObjects[i] = physicObjects[i + 1];
physicObjects[i]->id = physicObjects[i + 1]->id;
}
else free(physicObjects[i]);
}
// Decrease enabled physic objects count
physicObjectsCount--;
}
// Apply directional force to a physic object
void ApplyForce(PhysicObject pObj, Vector2 force)
{
if (pObj->rigidbody.enabled)
{
pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
}
}
// Apply radial force to all physic objects in range
void ApplyForceAtPosition(Vector2 position, float force, float radius)
{
for (int i = 0; i < physicObjectsCount; i++)
{
if (physicObjects[i]->rigidbody.enabled)
{
// Calculate direction and distance between force and physic object pposition
Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
if (physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
{
distance.x += physicObjects[i]->transform.scale.x/2;
distance.y += physicObjects[i]->transform.scale.y/2;
}
float distanceLength = Vector2Length(distance);
// Check if physic object is in force range
if (distanceLength <= radius)
{
// Normalize force direction
distance.x /= distanceLength;
distance.y /= -distanceLength;
// Calculate final force
Vector2 finalForce = { distance.x*force, distance.y*force };
// Apply force to the physic object
ApplyForce(physicObjects[i], finalForce);
}
}
}
}
// Convert Transform data type to Rectangle (position and scale)
Rectangle TransformToRectangle(Transform transform)
{
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
}
// Draw physic object information at screen position
void DrawPhysicObjectInfo(PhysicObject pObj, Vector2 position, int fontSize)
{
// Draw physic object ID
DrawText(FormatText("PhysicObject ID: %i - Enabled: %i", pObj->id, pObj->enabled), position.x, position.y, fontSize, BLACK);
// Draw physic object transform values
DrawText(FormatText("\nTRANSFORM\nPosition: %f, %f\nRotation: %f\nScale: %f, %f", pObj->transform.position.x, pObj->transform.position.y, pObj->transform.rotation, pObj->transform.scale.x, pObj->transform.scale.y), position.x, position.y, fontSize, BLACK);
// Draw physic object rigidbody values
DrawText(FormatText("\n\n\n\n\n\nRIGIDBODY\nEnabled: %i\nMass: %f\nAcceleration: %f, %f\nVelocity: %f, %f\nApplyGravity: %i\nIsGrounded: %i\nFriction: %f\nBounciness: %f", pObj->rigidbody.enabled, pObj->rigidbody.mass, pObj->rigidbody.acceleration.x, pObj->rigidbody.acceleration.y,
pObj->rigidbody.velocity.x, pObj->rigidbody.velocity.y, pObj->rigidbody.applyGravity, pObj->rigidbody.isGrounded, pObj->rigidbody.friction, pObj->rigidbody.bounciness), position.x, position.y, fontSize, BLACK);
DrawText(FormatText("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nCOLLIDER\nEnabled: %i\nBounds: %i, %i, %i, %i\nRadius: %i", pObj->collider.enabled, pObj->collider.bounds.x, pObj->collider.bounds.y, pObj->collider.bounds.width, pObj->collider.bounds.height, pObj->collider.radius), position.x, position.y, fontSize, BLACK);
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Returns the dot product of two Vector2
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
float result;
result = v1.x*v2.x + v1.y*v2.y;
return result;
}
static float Vector2Length(Vector2 v)
{
float result;
result = sqrt(v.x*v.x + v.y*v.y);
return result;
}
|